1
|
Fang H, Wu T, Ma S, Miao Y, Wang X. Biogenic emission as a potential source of atmospheric aromatic hydrocarbons: Insights from a cyanobacterial bloom-occurring eutrophic lake. J Environ Sci (China) 2025; 151:497-504. [PMID: 39481955 DOI: 10.1016/j.jes.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 11/03/2024]
Abstract
As important precursors of ozone (O3) and secondary organic aerosol (SOA), reactive aromatic hydrocarbons (AHs) have typically been classified as anthropogenic air pollutants. However, biogenic emission can also be a potential source of atmospheric AHs. Herein, field observations in a eutrophic lake were combined with laboratory incubation experiments to investigate the biogenic AH emission. Field work showed that the water-air fluxes of AHs measured at sites with high cyanobacteria abundance could reach an order of magnitude greater than those at sites with low cyanobacteria abundance, suggesting that cyanobacteria could be the important contributor to measured AHs. Laboratory incubation experiments further confirmed the AH emission of cyanobacteria and revealed that the emission could change significantly over the lifespan of cyanobacteria and varied to their growing conditions. By combining field observations and laboratory incubation experiments, it has been suggested that the emission of different AH species from cyanobacteria could be modulated by variable biogeochemical mechanisms and that the biochemical process of toluene could be different from that of other AHs. This study investigates AH emissions from inland aquatic ecosystem and suggests that biogenic emission could be a potential source of atmospheric AHs.
Collapse
Affiliation(s)
- Hua Fang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu 241000, China
| | - Ting Wu
- School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu 241000, China.
| | - Shutan Ma
- School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu 241000, China
| | - Yuqing Miao
- School of Geography and Tourism, Anhui Normal University, Wuhu 241000, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China.
| |
Collapse
|
2
|
Kang J, Hong B, Ma S, Wu J, Yang Z, Fan X, Shao L, Sun K, Zhao J, Fang H, Wu T. Ecological factors affecting toluene biosynthesis from bacterial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178186. [PMID: 39708473 DOI: 10.1016/j.scitotenv.2024.178186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/08/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
As a highly emitted volatile organic compound, toluene significantly contributes to atmospheric pollution and poses high risks to human health. Its anthropogenic source is well understood, while its biosynthesis remains poorly understood, especially by bacterial communities. This research attempted to reveal the temporal changes of bacterial community structure during toluene biosynthesis and identify key bacterial factors using 16S rRNA sequencing gene and machine learning methods. The results showed that toluene biosynthesis by the bacterial consortium nonlinearly increased with phenylacetic acid concentration with the optimal temperature of 25-30 °C and pH of 7-7.5. Diversity and richness of the bacterial communities increased over time, as well as the abundance and composition of phyla (e.g. Bacteroidota and Synergistota), families (e.g. Acidaminococcaceae and Oscillospiraceae), species (e.g. Bacteroides and Parabacteroides), and functional genes (e.g. phenylalanine, tyrosine, and tryptophan biosynthesis and fatty acid metabolism). They were significantly related to toluene biosynthesis, of which the Shannon and Simpson indices and the abundances of Synergistaceae, Bacteroidaceae, and Spirochaetaceae species and functional genes related to metabolic pathways, biosynthesis of secondary metabolites, and alanine aspartate and glutamate metabolism were identified as key factors. Findings of this study contributed to new understandings of the underlying mechanisms of toluene biosynthesis by the bacterial community.
Collapse
Affiliation(s)
- Jian Kang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China
| | - Bing Hong
- School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241000, China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu 241000, China.
| | - Shutan Ma
- School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241000, China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu 241000, China
| | - Jiangping Wu
- School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241000, China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu 241000, China
| | - Zhi Yang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China
| | - Xiaoyu Fan
- School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China
| | - Luyi Shao
- School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China
| | - Kun Sun
- Wuhu Institute of Technology, Wuhu 241006, China
| | - Juan Zhao
- School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241000, China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu 241000, China
| | - Hua Fang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241000, China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu 241000, China
| | - Ting Wu
- School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241000, China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu 241000, China.
| |
Collapse
|
3
|
Banerji A, Brinkman NE, Davis B, Franklin A, Jahne M, Keely SP. Food Webs and Feedbacks: The Untold Ecological Relevance of Antimicrobial Resistance as Seen in Harmful Algal Blooms. Microorganisms 2024; 12:2121. [PMID: 39597512 PMCID: PMC11596618 DOI: 10.3390/microorganisms12112121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/29/2024] Open
Abstract
Antimicrobial resistance (AMR) has long been framed as an epidemiological and public health concern. Its impacts on the environment are unclear. Yet, the basis for AMR is altered cell physiology. Just as this affects how microbes interact with antimicrobials, it can also affect how they interact with their own species, other species, and their non-living environment. Moreover, if the microbes are globally notorious for causing landscape-level environmental issues, then these effects could alter biodiversity and ecosystem function on a grand scale. To investigate these possibilities, we compiled peer-reviewed literature from the past 20 years regarding AMR in toxic freshwater cyanobacterial harmful algal blooms (HABs). We examined it for evidence of AMR affecting HAB frequency, severity, or persistence. Although no study within our scope was explicitly designed to address the question, multiple studies reported AMR-associated changes in HAB-forming cyanobacteria (and co-occurring microbes) that pertained directly to HAB timing, toxicity, and phase, as well as to the dynamics of HAB-afflicted aquatic food webs. These findings highlight the potential for AMR to have far-reaching environmental impacts (including the loss of biodiversity and ecosystem function) and bring into focus the importance of confronting complex interrelated issues such as AMR and HABs in concert, with interdisciplinary tools and perspectives.
Collapse
Affiliation(s)
- Aabir Banerji
- US Environmental Protection Agency, Office of Research and Development, Duluth, MN 55804, USA
| | - Nichole E. Brinkman
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA; (N.E.B.); (B.D.); (M.J.)
| | - Benjamin Davis
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA; (N.E.B.); (B.D.); (M.J.)
| | - Alison Franklin
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA; (N.E.B.); (B.D.); (M.J.)
| | - Michael Jahne
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA; (N.E.B.); (B.D.); (M.J.)
| | - Scott P. Keely
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA; (N.E.B.); (B.D.); (M.J.)
| |
Collapse
|
4
|
Kriechbaum R, Spadiut O, Kopp J. Bioconversion of Furanic Compounds by Chlorella vulgaris-Unveiling Biotechnological Potentials. Microorganisms 2024; 12:1222. [PMID: 38930604 PMCID: PMC11205514 DOI: 10.3390/microorganisms12061222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Lignocellulosic biomass is abundant on Earth, and there are multiple acidic pretreatment options to separate the cellulose, hemicellulose, and lignin fraction. By doing so, the fermentation inhibitors 5-Hydroxymethylfurfural (HMF) and furfural (FF) are produced in varying concentrations depending on the hydrolyzed substrate. In this study, the impact of these furanic compounds on Chlorella vulgaris growth and photosynthetic activity was analyzed. Both compounds led to a prolonged lag phase in Chlorella vulgaris growth. While the photosynthetic yield Y(II) was not significantly influenced in cultivations containing HMF, FF significantly reduced Y(II). The conversion of 5-Hydroxymethylfurfural and furfural to 5-Hydroxymethyl-2-Furoic Acid and 2-Furoic Acid was observed. In total, 100% of HMF and FF was converted in photoautotrophic and mixotrophic Chlorella vulgaris cultivations. The results demonstrate that Chlorella vulgaris is, as of now, the first known microalgal species converting furanic compounds.
Collapse
Affiliation(s)
| | | | - Julian Kopp
- Research Division: Biochemical Engineering, Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorferstraße 1a, 1060 Wien, Austria; (R.K.); (O.S.)
| |
Collapse
|
5
|
Chen W, Dou J, Xu X, Ma X, Chen J, Liu X. β-cyclocitral, a novel AChE inhibitor, contributes to the defense of Microcystis aeruginosa against Daphnia grazing. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133248. [PMID: 38147752 DOI: 10.1016/j.jhazmat.2023.133248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 12/28/2023]
Abstract
β-cyclocitral is one of the major compounds in cyanobacterial volatile organic compound (VOCs) and can poison other aquatic organisms. To investigate the effect of β-cyclocitral on cyanobacterial-grazer interactions, Daphnia sinensis was fed Microcystis aeruginosa and exposed to β-cyclocitral. Our present study demonstrated that M. aeruginosa could significantly inhibit D. sinensis grazing. And the grazing inhibition by Microcystis aeruginosa results from the suppression of feeding rate, heart rate, thoracic limb activity and swimming speed of D. sinensis. In addition, M. aeruginosa could also induce intestinal peristalsis and emptying in D. sinensis. Interestingly, our present study found that the exposure to β-cyclocitral could mimic a range of phenotypes induced by M. aeruginosa in D. sinensis. These results suggested that M. aeruginosa could release β-cyclocitral to inhibit Daphnia grazing. To further examine the toxic mechanism of β-cyclocitral in Daphnia, several in vivo and in vitro experiments displayed that β-cyclocitral was a novel inhibitor of acetylcholinesterase (AChE). It could induce the accumulation of acetylcholine (ACh) by inhibiting AchE activity in D. sinensis. High level of endogenous Ach could inhibit feeding rate and induce intestinal peristalsis and emptying in D. sinensis.
Collapse
Affiliation(s)
- Wenkai Chen
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jun Dou
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xueying Xu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Ximeng Ma
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiying Chen
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangjiang Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
6
|
Pan N, Xu H, Chen W, Liu Z, Liu Y, Huang T, Du S, Xu S, Zheng T, Zuo Z. Cyanobacterial VOCs β-ionone and β-cyclocitral poisoning Lemna turionifera by triggering programmed cell death. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123059. [PMID: 38042469 DOI: 10.1016/j.envpol.2023.123059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/07/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
β-Ionone and β-cyclocitral are two typical components in cyanobacterial volatiles, which can poison aquatic plants and even cause death. To reveal the toxic mechanisms of the two compounds on aquatic plants through programmed cell death (PCD), the photosynthetic capacities, caspase-3-like activity, DNA fragmentation and ladders, as well as expression of the genes associated with PCD in Lemna turionifera were investigated in exposure to β-ionone (0.2 mM) and β-cyclocitral (0.4 mM) at lethal concentration. With prolonging the treatment time, L. turionifera fronds gradually died, and photosynthetic capacities gradually reduced and even disappeared at the 96th h. This demonstrated that the death process might be a PCD rather than a necrosis, due to the gradual loss of physiological activities. When L. turionifera underwent the death, caspase-3-like was activated after 3 h, and reached to the strongest activity at the 24th h. TUNEL-positive nuclei were detected after 12 h, and appeared in large numbers at the 48th h. The DNA was cleaved by Ca2+-dependent endonucleases and showed obviously ladders. In addition, the expression of 5 genes (TSPO, ERN1, CTSB, CYC, and ATR) positively related with PCD initiation was up-regulated, while the expression of 2 genes (RRM2 and TUBA) negatively related with PCD initiation was down-regulated. Therefore, β-ionone and β-cyclocitral can poison L. turionifera by adjusting related gene expression to trigger PCD.
Collapse
Affiliation(s)
- Ning Pan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Haozhe Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Wangbo Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Zijian Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yichi Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Tianyu Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Siyi Du
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Sun Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Tiefeng Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Zhaojiang Zuo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
7
|
Huang T, Lai M, Lin Z, Luo R, Xiang X, Xu H, Pan N, Zuo Z. Identification of algicidal monoterpenoids from four chemotypes of Cinnamomum camphora and their algicidal mechanisms on Microcystis aeruginosa. ENVIRONMENTAL RESEARCH 2024; 241:117714. [PMID: 37989462 DOI: 10.1016/j.envres.2023.117714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/27/2023] [Accepted: 11/15/2023] [Indexed: 11/23/2023]
Abstract
Cyanobacterial blooms cause serious environmental issues, and plant secondary metabolites are considered as new algaecide for controlling them. Cinnamomum camphora produces a wide spectrum of terpenoids and has 4 main chemotypes, including linalool, camphor, eucalyptol and borneol chemotype. To develop the new cyanobacterial algaecide by using suitable chemotype of Cinnamomum camphora and the main terpenoids, we analyzed the terpenoid composition in the 4 chemotype extracts, evaluated the algicidal effects of the extracts and their typical monoterpenoids on Microcystis aeruginosa, and investigated the algicidal mechanism of the stronger algicidal agents. Among the 4 chemotypes, eucalyptol and borneol chemotype extracts exhibited stronger algicidal effects. In the 4 chemotype extracts, monoterpenoids were the main compounds, of which linalool, camphor, eucalyptol and borneol were the typical components. Among the 4 typical monoterpenoids, eucalyptol and borneol showed stronger algicidal effects, which killed 78.8% and 100% M. aeruginosa cells, respectively, at 1.2 mM after 48 h. In 1.2 mM eucalyptol and borneol treatments, the reactive oxygen species levels markedly increased, and the caspase-3-like activity also raised. With prolonging the treatment time, M. aeruginosa cells gradually shrank and wrinkled, and the cell TUNEL fluorescence intensity and DNA degradation gradually enhanced, indicating that the lethal mechanism is causing apoptosis-like programmed cell death (PCD). Therefore, eucalyptol and borneol chemotype extracts and their typical monoterpenoids have the potential for developing as algaecides to control cyanobacteria through triggering apoptosis-like PCD.
Collapse
Affiliation(s)
- Tianyu Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Meng Lai
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Zhenwei Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Ruiqi Luo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Xuezheng Xiang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Haozhe Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Ning Pan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Zhaojiang Zuo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
8
|
Collart L, Jiang D, Halsey KH. The volatilome reveals microcystin concentration, microbial composition, and oxidative stress in a critical Oregon freshwater lake. mSystems 2023; 8:e0037923. [PMID: 37589463 PMCID: PMC10654074 DOI: 10.1128/msystems.00379-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/03/2023] [Indexed: 08/18/2023] Open
Abstract
IMPORTANCE Harmful algal blooms are among the most significant threats to drinking water safety. Blooms dominated by cyanobacteria can produce potentially harmful toxins and, despite intensive research, toxin production remains unpredictable. We measured gaseous molecules in Upper Klamath Lake, Oregon, over 2 years and used them to predict the presence and concentration of the cyanotoxin, microcystin, and microbial community composition. Subsets of gaseous compounds were identified that are associated with microcystin production during oxidative stress, pointing to ecosystem-level interactions leading to microcystin contamination. Our approach shows potential for gaseous molecules to be harnessed in monitoring critical waterways.
Collapse
Affiliation(s)
- Lindsay Collart
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | - Duo Jiang
- Department of Statistics, Oregon State University, Corvallis, Oregon, USA
| | - Kimberly H. Halsey
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
9
|
Wang W, Fang H, Zhang Y, Ding Y, Hua F, Wu T, Yan Y. Characterizing sources and ozone formations of summertime volatile organic compounds observed in a medium-sized city in Yangtze River Delta region. CHEMOSPHERE 2023; 328:138609. [PMID: 37023901 DOI: 10.1016/j.chemosphere.2023.138609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Volatile organic compounds (VOCs) emitted from various sources into atmosphere could cause serious O3 pollution in urban areas. Although characterizations of ambient VOCs have been extensively studied in megacities, they are scarcely investigated in medium/small-sized cities, which could present different pollution characterizations due to the factors like emission sources and populations. Herein, field campaigns were conducted concurrently at six sites in a medium-sized city of Yangtze River Delta region to determine ambient levels, O3 formations and source contributions of summertime VOCs. During the observation period, the total VOC (TVOCs) mixing ratios ranged from 27.10 ± 3.35 to 39.09 ± 10.84 ppb at six sites. The ozone formation potential (OFP) results showed that alkenes, aromatics and oxygenated VOCs (OVOCs) were dominant contributors, together sharing 81.4% of total calculated OFPs. Ethene ranked the largest OFP contributor at all six sites. A high VOC site, KC, was selected as a case to detailed analyze diurnal variations of VOCs and its relationship with O3. Consequently, diurnal patterns varied with VOC groups, and TVOC concentrations were lowest during strong photochemical period (15:00-18:00 p.m.), opposite to the O3 peak. VOCs/NOx ratios and observation-based model (OBM) analysis revealed that O3 formation sensitivity was primarily in transition regime in summertime and that the reduction of VOCs rather than NOX would be more efficient to suppress O3 peak at KC during pollution episode. Additionally, source apportionment conducted with positive matrix factorization (PMF) indicated that industrial emission (29.2%-51.7%) and gasoline exhaust (22.4%-41.1%) were major sources for VOCs at all six sites, and that VOCs from industrial emissions and gasoline exhaust were the key precursors for ozone formation. Our results shed light on the importance of alkenes, aromatics and OVOCs in forming O3 and propose that preferentially reducing VOCs especially those from industrial emission and gasoline exhaust would benefit alleviating O3 pollution.
Collapse
Affiliation(s)
- Wenjing Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241000, China
| | - Hua Fang
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241000, China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, 241000, China.
| | - Ying Zhang
- Wuhu Ecological and Environmental Monitoring Center of Anhui Province, Wuhu, 241005, China
| | - Yueyue Ding
- Wuhu Ecological and Environmental Monitoring Center of Anhui Province, Wuhu, 241005, China
| | - Fei Hua
- Wuhu Institute of Technology, Wuhu, 241006, China
| | - Ting Wu
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241000, China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, 241000, China.
| | - Yunzhi Yan
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241000, China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, 241000, China.
| |
Collapse
|
10
|
Che H, Yan S, Xiong M, Nie Y, Tian X, Li Y. Ultra-trace detection and efficient adsorption removal of multiple water-soluble volatile organic compounds by fluorescent sensor array. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130182. [PMID: 36279650 DOI: 10.1016/j.jhazmat.2022.130182] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/24/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Due to the extremely low concentration, complex composition and easy to be converted into each other in water and air of water-soluble volatile organic compounds (VOCs), it is a great challenge to the traditional detection technology, pollution control and traceability, etc. Therefore, developing a convenient, swift and on-site detection method for simultaneous quantification of multiple VOCs is highly anticipated. In this paper, a multifunctional sensor array with adsorption and sensing of VOCs has been constructed by four fluorescence channels of small-sized Eu@Uio-66 and Tb@Uio-66. Due to the obvious cross-reactive characteristics between 4 fluorescence channels and VOCs, the sensor array could detect 8 VOCs simultaneously with all detection limits as low as ppb level. In addition, the detection results of sensor array for actual water samples coexisting with multiple VOCs confirmed that it has strong anti-interference performance and could be used for simultaneous detection of multiple VOCs in real water. The construction of sensor array with VOC adsorption function not only helps to reduce the detection limit of VOCs benefiting from the pre-concentration of materials, but also has significant value to reduce the harmfulness of pollutants. Predictably, this work is of great significance for VOC traceability, analysis of ecotoxicological effects and monitoring of pollution distribution characteristics.
Collapse
Affiliation(s)
- Huachao Che
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Shulin Yan
- Wuxi Little Swan Electric Co., Ltd., National High-tech Development Zone, No. 18 South Changjiang RD, Wuxi, PR China
| | - Ming Xiong
- Wuxi Little Swan Electric Co., Ltd., National High-tech Development Zone, No. 18 South Changjiang RD, Wuxi, PR China
| | - Yulun Nie
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China.
| | - Xike Tian
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Yong Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| |
Collapse
|
11
|
Wang J, Chu YX, Tian G, He R. Estimation of sulfur fate and contribution to VSC emissions from lakes during algae decay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159193. [PMID: 36202355 DOI: 10.1016/j.scitotenv.2022.159193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Algae decay is an important process influencing environmental variables and emissions of volatile sulfur compounds (VSCs) in eutrophic lakes. However, effects of algae decay on VSC emissions from eutrophic lakes as well as fate of algae-derived sulfur remain poorly understood. In this study, simulated algae-sediment systems were used to explore the flow and distribution of sulfur during algae decay. VSCs including hydrogen sulfide (H2S), methanethiol (CH3SH), carbon disulfide (CS2) and dimethyl sulfide ((CH3)2S) were detected during algae decay, which increased with algae biomass and eutrophic levels in lakes. During algae decay, the highest H2S, CH3SH and (CH3)2S emission rates of 10.45, 21.82 and 43.26 μg d-1 occurred in the first 1-2 days, respectively, while the highest CS2 emission rates were observed between days 8 and 11. The maximum emissions of H2S and CS2 from algae decay were estimated at 0.51 and 0.35 mg m-2 d-1 in Lake Taihu, accounting for 1.57% and 0.69% of the total H2S and CS2 emissions of in situ, respectively. Algae decay could significantly increase the contents of total sulfur and total carbon in sediments by 2.90%-21.11% and 4.23%-45.05%, respectively. The VSC emissions during algae decay could be predicted using the multiple regression models with the contents of total carbon, total nitrogen and sulfur-containing compounds in sediments. Partial least squares path modelling demonstrated that algae decay had a low direct effect on VSC emissions with a strength of 0.06, while it had a significant influence on environmental variables with a strength of 0.63, which could affect VSC emissions with a strength of 0.85, indicating VSC emissions from eutrophic lakes were affected by the environmental variables rather than the direct influence of algae decay. These findings illustrated the mechanisms of VSC emissions during algae decay and provided insights into VSC control and mitigation for eutrophic lakes.
Collapse
Affiliation(s)
- Jing Wang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yi-Xuan Chu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China; School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Guangming Tian
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Ruo He
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
12
|
Zuo Z. Emission of cyanobacterial volatile organic compounds and their roles in blooms. Front Microbiol 2023; 14:1097712. [PMID: 36891397 PMCID: PMC9987517 DOI: 10.3389/fmicb.2023.1097712] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
Cyanobacteria are photosynthetic prokaryotes and one of dominant species in eutrophicated waters, which easily burst blooms in summer with high irradiance and temperature conditions. In response to high irradiance, high temperature, and nutrient conditions, cyanobacteria release abundant of volatile organic compounds (VOCs) by up-regulating related gene expression and oxidatively degrading β-carotene. These VOCs not only increase offensive odor in waters, but also transfer allelopathic signals to algae and aquatic plants, resulting in cyanobacteria dominating eutrophicated waters. Among these VOCs, β-cyclocitral, α-ionone, β-ionone, limonene, longifolene, and eucalyptol have been identified as the main allelopathic agents, which even directly kill algae by inducing programmed cell death (PCD). The VOCs released from cyanobacteria, especially the ruptured cells, exhibit repelling effects on the herbivores, which is beneficial to survival of the population. Cyanobacterial VOCs might transfer aggregating information among homogeneous species, so the acceptors initiate aggregation to resist the coming stresses. It can be speculated that the adverse conditions can promote VOC emission from cyanobacteria, which play important roles in cyanobacteria dominating eutrophicated waters and even bursting blooms.
Collapse
Affiliation(s)
- Zhaojiang Zuo
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-Based Healthcare Functions, Zhejiang A&F University, Hangzhou, China.,State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
13
|
Plaas HE, Paerl RW, Baumann K, Karl C, Popendorf KJ, Barnard MA, Chang NY, Curtis NP, Huang H, Mathieson OL, Sanchez J, Maizel DJ, Bartenfelder AN, Braddy JS, Hall NS, Rossignol KL, Sloup R, Paerl HW. Harmful cyanobacterial aerosolization dynamics in the airshed of a eutrophic estuary. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158383. [PMID: 36057302 DOI: 10.1016/j.scitotenv.2022.158383] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/29/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
In addition to obvious negative effects on water quality in eutrophic aquatic ecosystems, recent work suggests that cyanobacterial harmful algal blooms (CHABs) also impact air quality via emissions carrying cyanobacterial cells and cyanotoxins. However, the environmental controls on CHAB-derived aerosol and its potential public health impacts remain largely unknown. Accordingly, the aims of this study were to 1) investigate the occurrence of microcystins (MC) and putatively toxic cyanobacterial communities in particulate matter ≤ 2.5 μm in diameter (PM2.5), 2) elucidate environmental conditions promoting their aerosolization, and 3) identify associations between CHABs and PM2.5 concentrations in the airshed of the Chowan River-Albemarle Sound, an oligohaline, eutrophic estuary in eastern North Carolina, USA. In summer 2020, during peak CHAB season, continuous PM2.5 samples and interval water samples were collected at two distinctive sites for targeted analyses of cyanobacterial community composition and MC concentration. Supporting air and water quality measurements were made in parallel to contextualize findings and permit statistical analyses of environmental factors driving changes in CHAB-derived aerosol. MC concentrations were low throughout the study, but a CHAB dominated by Dolichospermum occurred from late June to early August. Several aquatic CHAB genera recovered from Chowan River surface water were identified in PM2.5 during multiple time points, including Anabaena, Aphanizomenon, Dolichospermum, Microcystis, and Pseudanabaena. Cyanobacterial enrichment in PM2.5 was indistinctive between subspecies, but at one site during the early bloom, we observed the simultaneous enrichment of several cyanobacterial genera in PM2.5. In association with the CHAB, the median PM2.5 mass concentration increased to 8.97 μg m-3 (IQR = 5.15), significantly above the non-bloom background of 5.35 μg m-3 (IQR = 3.70) (W = 1835, p < 0.001). Results underscore the need for highly resolved temporal measurements to conclusively investigate the role that CHABs play in regional air quality and respiratory health risk.
Collapse
Affiliation(s)
- Haley E Plaas
- UNC-Chapel Hill, Earth, Marine, and Environmental Sciences, Institute of Marine Sciences, 3431 Arendell St., Morehead City, NC 28577, United States of America; UNC-Chapel Hill, Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, 135 Dauer Dr., Chapel Hill, NC 27599, United States of America.
| | - Ryan W Paerl
- North Carolina State University, Department of Marine, Earth, and Atmospheric Sciences, Jordan Hall, 2800 Faucette Dr., Raleigh, NC 27607, United States of America
| | - Karsten Baumann
- UNC-Chapel Hill, Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, 135 Dauer Dr., Chapel Hill, NC 27599, United States of America
| | - Colleen Karl
- Chowan Edenton Environmental Group, PO Box 271, Tyner, NC 27980, United States of America
| | - Kimberly J Popendorf
- University of Miami, Rosenstiel School of Marine & Atmospheric Science, 4600 Rickenbacker Cswy, Miami, FL 33149, United States of America
| | - Malcolm A Barnard
- UNC-Chapel Hill, Earth, Marine, and Environmental Sciences, Institute of Marine Sciences, 3431 Arendell St., Morehead City, NC 28577, United States of America
| | - Naomi Y Chang
- UNC-Chapel Hill, Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, 135 Dauer Dr., Chapel Hill, NC 27599, United States of America
| | - Nathaniel P Curtis
- North Carolina State University, Department of Marine, Earth, and Atmospheric Sciences, Jordan Hall, 2800 Faucette Dr., Raleigh, NC 27607, United States of America
| | - Hwa Huang
- North Carolina State University, Department of Marine, Earth, and Atmospheric Sciences, Jordan Hall, 2800 Faucette Dr., Raleigh, NC 27607, United States of America
| | - Olivia L Mathieson
- North Carolina State University, Department of Marine, Earth, and Atmospheric Sciences, Jordan Hall, 2800 Faucette Dr., Raleigh, NC 27607, United States of America
| | - Joel Sanchez
- North Carolina State University, Department of Marine, Earth, and Atmospheric Sciences, Jordan Hall, 2800 Faucette Dr., Raleigh, NC 27607, United States of America
| | - Daniela J Maizel
- University of Miami, Rosenstiel School of Marine & Atmospheric Science, 4600 Rickenbacker Cswy, Miami, FL 33149, United States of America
| | - Amy N Bartenfelder
- UNC-Chapel Hill, Earth, Marine, and Environmental Sciences, Institute of Marine Sciences, 3431 Arendell St., Morehead City, NC 28577, United States of America
| | - Jeremy S Braddy
- UNC-Chapel Hill, Earth, Marine, and Environmental Sciences, Institute of Marine Sciences, 3431 Arendell St., Morehead City, NC 28577, United States of America
| | - Nathan S Hall
- UNC-Chapel Hill, Earth, Marine, and Environmental Sciences, Institute of Marine Sciences, 3431 Arendell St., Morehead City, NC 28577, United States of America
| | - Karen L Rossignol
- UNC-Chapel Hill, Earth, Marine, and Environmental Sciences, Institute of Marine Sciences, 3431 Arendell St., Morehead City, NC 28577, United States of America
| | - Randolph Sloup
- UNC-Chapel Hill, Earth, Marine, and Environmental Sciences, Institute of Marine Sciences, 3431 Arendell St., Morehead City, NC 28577, United States of America
| | - Hans W Paerl
- UNC-Chapel Hill, Earth, Marine, and Environmental Sciences, Institute of Marine Sciences, 3431 Arendell St., Morehead City, NC 28577, United States of America; UNC-Chapel Hill, Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, 135 Dauer Dr., Chapel Hill, NC 27599, United States of America
| |
Collapse
|
14
|
Pozzer AC, Gómez PA, Weiss J. Volatile organic compounds in aquatic ecosystems - Detection, origin, significance and applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156155. [PMID: 35609693 DOI: 10.1016/j.scitotenv.2022.156155] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/06/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Volatile organic compounds (VOCs) include a broad range of compounds. Their production influences a large number of processes, having direct and secondary effects on different fields, such as climate change, economy and ecology. Although our planet is primarily covered with water (~70% of the globe surface), the information on aquatic VOCs, compared to the data available for the terrestrial environments, is still limited. Regardless of the difficulty in collecting and analysing data, because of their extreme complexity, diversification and important spatial-temporal emission variation, it was demonstrated that aquatic organisms are able to produce a variety of bioactive compounds. This production happens in response to abiotic and biotic stresses, evidencing the fundamental role of these metabolites, both in terms of composition and amount, in providing important ecological information and possible non-invasive tools to monitor different biological systems. The study of these compounds is an important and productive task with possible and interesting impacts in future practical applications in different fields. This review aims to summarize the knowledge on the aquatic VOCs, the recent advances in understanding their diverse roles and ecological impacts, the generally used methodology for their sampling and analysis, and their enormous potential as non-invasive, non-destructive and financeable affordable real-time biomonitoring tool, both in natural habitats and in controlled industrial situations. Finally, the possible future technical applications, highlighting their economic and social potential, such as the possibility to use VOCs as valuable alternative source of chemicals and as biocontrol and bioregulation agents, are emphasized.
Collapse
Affiliation(s)
- Anna Caterina Pozzer
- Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Campus Muralla del Mar. 30202, Cartagena, Murcia, Spain
| | - Perla A Gómez
- Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Campus Muralla del Mar. 30202, Cartagena, Murcia, Spain
| | - Julia Weiss
- Molecular Genetics, Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Campus Muralla del Mar. 30202, Cartagena, Murcia, Spain.
| |
Collapse
|
15
|
Du S, Xu H, Yang M, Pan N, Zheng T, Xu C, Li Y, Zuo Z. Toxic mechanism of two cyanobacterial volatiles β-cyclocitral and β-ionone on the photosynthesis in duckweed by altering gene expression. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119711. [PMID: 35809713 DOI: 10.1016/j.envpol.2022.119711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/30/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Volatile organic compounds (VOCs) promote cyanobacteria dominating eutrophicated waters, with aquatic plant decrease and even disappearance. To uncover the toxic mechanism of cyanobacterial VOCs on aquatic plants, we investigated the growth, photosynthetic pigment levels, photosynthetic abilities and related gene expression in duckweed treated with β-cyclocitral and β-ionone, 2 main components in the VOCs. The levels of chlorophylls and carotenoids gradually declined with raising the concentration of the 2 compounds and prolonging the treatment time. Their decline should result from the down-regulation of 8 genes associated with photosynthetic pigment biosynthesis and up-regulation of 2 genes involved in carotenoid degradation. The reduction was also found in the photosystem II (PSII) efficiency and O2 evolution rate, which should result from the lowered photosynthetic pigment levels and down-regulation of 38 genes related with photosynthetic process. The frond numbers, total frond area and fresh weight gradually decreased with raising the 2 compound concentration, which may result from the lowered photosynthetic abilities as well as down-regulated expression of 7 genes associated with growth-promoting hormone biosynthesis and signal transduction. It can be speculated that cyanobacterial VOCs may poison aquatic plants by lowering the photosynthesis and growth through altering related gene expression.
Collapse
Affiliation(s)
- Siyi Du
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Haozhe Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Mengdan Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Ning Pan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Tiefeng Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Chenyi Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Zhaojiang Zuo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|