1
|
Girón-Guzmán I, Falcó I, Cuevas-Ferrando E, Ballesteros S, Barranquero R, Sánchez G. Survival of viruses in water microcosms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 963:178416. [PMID: 39818153 DOI: 10.1016/j.scitotenv.2025.178416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/04/2024] [Accepted: 01/05/2025] [Indexed: 01/18/2025]
Abstract
Human enteric viruses and emerging viruses such as severe acute respiratory syndrome coronavirus 2, influenza virus and monkeypox virus, are frequently detected in wastewater. Human enteric viruses are highly persistent in water, but there is limited information available for non-enteric viruses. The present study evaluated the stability of hepatitis A virus (HAV), murine norovirus (MNV), influenza A virus H3N2 (IAV H3N2), human coronavirus (HCoV) 229E, and vaccinia virus (VACV) in reference water (RW), effluent wastewater (EW) and drinking water (DW) under refrigeration and room temperature conditions. The decay of infectious viruses was analyzed using a monophasic decay model, which largely showed that human enteric viruses exhibit remarkable persistence in water samples. MNV infectivity decreased significantly after 14 days in EW at room temperature compared to 84 days under refrigerated conditions, with decay rates of 0.230 log TCID50/day at room temperature and 0.040 log TCID50/day under refrigeration. A gradual decline in HAV infectivity was observed at room temperature, whereas at refrigerated temperature, infectious viruses were recovered even after 98 days. HCoV-229E, IAV H3N2 and VACV were completely inactivated in DW and EW at room temperature between 7 and 21 days, with longer stability observed under refrigeration. The decay of IAV H3N2, HCoV-229E and VACV in EW and DW was also assessed in parallel using RT-qPCR to determine genome persistence and viability PCR to determine intact viral capsid persistence. Overall, our results suggest that viability PCR is not suitable for tracking virus decay in water under real-world environmental conditions.
Collapse
Affiliation(s)
- Inés Girón-Guzmán
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Irene Falcó
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain; Department of Microbiology and Ecology, University of Valencia, C/ Doctor Moliner, 50, 46100 Burjassot, Valencia, Spain.
| | - Enric Cuevas-Ferrando
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Sandra Ballesteros
- Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Regino Barranquero
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Gloria Sánchez
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain.
| |
Collapse
|
2
|
Mohamad Ishak NS, Numaguchi T, Ikemoto K. Antiviral Effects of Pyrroloquinoline Quinone through Redox Catalysis To Prevent Coronavirus Infection. ACS OMEGA 2023; 8:44839-44849. [PMID: 38046288 PMCID: PMC10688161 DOI: 10.1021/acsomega.3c06040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023]
Abstract
The global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) coronavirus disease (COVID-19) is ongoing. Therefore, effective prevention of virus infection is required. Pyrroloquinoline quinone (PQQ), a natural compound found in various foods and human breast milk, plays a role in various physiological processes and is associated with health benefits. In this study, we aimed to determine the effects of PQQ on preventing coronavirus infections using a proxy Feline Infectious Peritonitis Virus (FIPV; belongs to the coronavirus family). In plaque reduction assays, we showed that pre- and post-PQQ-treated viruses were less infectious. IC50 was 87.9 and 5.1 μM for pre- and post-PQQ-treated viral infections, respectively. These results suggest that PQQ decreased the virion stability and viral replication. RT-qPCR confirmed these results. TEM findings showed that PQQ damaged viral capsids and aggregated viral particles, leading to inhibited virus attachment and entry into the host cells. PQQ was optimized by the addition of ascorbic acid and glutamic acid, which increased the number of redox cycles of PQQ and increased reactive oxygen species production by 14 times. In vitro, PQQ inhibited 3 CLpro/Mpro enzymes (an enzyme critical for viral replication) activity of SARS-CoV-2. Our results demonstrate the antiviral effect of PQQ on coronavirus, mainly by disrupting virion stability and loss of infectivity (occurring outside the host cell), due to increased redox activity. Furthermore, PQQ may hinder viral replication (inside the host cell) by 3 CLpro/Mpro enzyme inhibition. In summary, this study demonstrates the antiviral effect of PQQ and its potential application in coronavirus diseases.
Collapse
Affiliation(s)
- Nur Syafiqah Mohamad Ishak
- Niigata Research Laboratory, Mitsubishi Gas Chemical Company, Inc., 182, Tayuhama, Kita-ku, Niigata City, Niigata 950-3112, Japan
| | - Tomoe Numaguchi
- Niigata Research Laboratory, Mitsubishi Gas Chemical Company, Inc., 182, Tayuhama, Kita-ku, Niigata City, Niigata 950-3112, Japan
| | - Kazuto Ikemoto
- Niigata Research Laboratory, Mitsubishi Gas Chemical Company, Inc., 182, Tayuhama, Kita-ku, Niigata City, Niigata 950-3112, Japan
| |
Collapse
|
3
|
Locus T, Lambrecht E, Lamoral S, Willems S, Van Gucht S, Vanwolleghem T, Peeters M. A Multifaceted Approach for Evaluating Hepatitis E Virus Infectivity In Vitro: Cell Culture and Innovative Molecular Methods for Integrity Assessment. Vet Sci 2023; 10:676. [PMID: 38133227 PMCID: PMC10748075 DOI: 10.3390/vetsci10120676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Hepatitis E virus is a prominent cause of viral hepatitis worldwide. In Western countries, most infections are asymptomatic. However, acute self-limiting hepatitis and chronic cases in immunocompromised individuals can occur. Studying HEV is challenging due to its difficulty to grow in cell culture. Consequently, the detection of the virus mainly relies on RT-qPCR, which cannot differentiate between infectious and non-infectious particles. To overcome this problem, methods assessing viral integrity offer a possible solution to differentiate between intact and damaged viruses. This study aims at optimizing existing HEV cell culture models and RT-qPCR-based assays for selectively detecting intact virions to establish a reliable model for assessing HEV infectivity. In conclusion, these newly developed methods hold promise for enhancing food safety by identifying approaches for inactivating HEV in food processing, thereby increasing food safety measures.
Collapse
Affiliation(s)
- Tatjana Locus
- Fisheries and Food, Technology and Food Unit, Flemish Research Institute for Agriculture (ILVO), Brusselsesteenweg 370, 9090 Melle, Belgium or (T.L.); (E.L.)
- Sciensano, Infectious Diseases in Humans, Viral Diseases, Engelandstraat 642, 1180 Ukkel, Belgium
- Laboratory of Experimental Medicine and Pediatrics, Viral Hepatitis Research Group, University of Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
| | - Ellen Lambrecht
- Fisheries and Food, Technology and Food Unit, Flemish Research Institute for Agriculture (ILVO), Brusselsesteenweg 370, 9090 Melle, Belgium or (T.L.); (E.L.)
| | - Sophie Lamoral
- Sciensano, Infectious Diseases in Humans, Viral Diseases, Engelandstraat 642, 1180 Ukkel, Belgium
| | - Sjarlotte Willems
- Fisheries and Food, Technology and Food Unit, Flemish Research Institute for Agriculture (ILVO), Brusselsesteenweg 370, 9090 Melle, Belgium or (T.L.); (E.L.)
| | - Steven Van Gucht
- Sciensano, Infectious Diseases in Humans, Viral Diseases, Engelandstraat 642, 1180 Ukkel, Belgium
| | - Thomas Vanwolleghem
- Laboratory of Experimental Medicine and Pediatrics, Viral Hepatitis Research Group, University of Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
| | - Michael Peeters
- Sciensano, Infectious Diseases in Humans, Viral Diseases, Engelandstraat 642, 1180 Ukkel, Belgium
| |
Collapse
|
4
|
Contrant M, Bigault L, Andraud M, Desdouits M, Rocq S, Le Guyader FS, Blanchard Y. Porcine Epidemic Diarrhea Virus, Surrogate for Coronavirus Decay Measurement in French Coastal Waters and Contribution to Coronavirus Risk Evaluation. Microbiol Spectr 2023; 11:e0184423. [PMID: 37395665 PMCID: PMC10433961 DOI: 10.1128/spectrum.01844-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/02/2023] [Indexed: 07/04/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in infected patients mainly displays pulmonary and oronasal tropism; however, the presence of the virus has also been demonstrated in the stools of patients and consequently in wastewater treatment plant effluents, raising the question of the potential risk of environmental contamination (such as seawater contamination) through inadequately treated wastewater spillover into surface or coastal waters even if the environmental detection of viral RNA alone does not substantiate risk of infection. Therefore, here, we decided to experimentally evaluate the persistence of the porcine epidemic diarrhea virus (PEDv), considered as a coronavirus representative model, in the coastal environment of France. Coastal seawater was collected, sterile-filtered, and inoculated with PEDv before incubation for 0 to 4 weeks at four temperatures representative of those measured along the French coasts throughout the year (4, 8, 15, and 24°C). The decay rate of PEDv was determined using mathematical modeling and was used to determine the half-life of the virus along the French coast in accordance with temperatures from 2000 to 2021. We experimentally observed an inverse correlation between seawater temperature and the persistence of infectious viruses in seawater and confirm that the risk of transmission of infectious viruses from contaminated stool in wastewater to seawater during recreational practices is very limited. The present work represents a good model to assess the persistence of coronaviruses in coastal environments and contributes to risk evaluation, not only for SARS-CoV-2 persistence, but also for other coronaviruses, specifically enteric coronaviruses from livestock. IMPORTANCE The present work addresses the question of the persistence of coronavirus in marine environments because SARS-CoV-2 is regularly detected in wastewater treatment plants, and the coastal environment, subjected to increasing anthropogenic pressure and the final receiver of surface waters and sometimes insufficiently depurated wastewater, is particularly at risk. The problem also arises in the possibility of soil contamination by CoV from animals, especially livestock, during manure application, where, by soil impregnation and runoff, these viruses can end up in seawater. Our findings are of interest to researchers and authorities seeking to monitor coronaviruses in the environment, either in tourist areas or in regions of the world where centralized systems for wastewater treatment are not implemented, and more broadly, to the scientific community involved in "One Health" approaches.
Collapse
Affiliation(s)
- Maud Contrant
- Viral Genetics and Biosecurity Unit (GVB), French Agency for Food, Environmental and Occupational Health Safety (ANSES), Ploufragan, France
| | - Lionel Bigault
- Viral Genetics and Biosecurity Unit (GVB), French Agency for Food, Environmental and Occupational Health Safety (ANSES), Ploufragan, France
| | - Mathieu Andraud
- Epidemiology, Animal Health and Welfare Unit (EPISABE), French Agency for Food, Environmental and Occupational Health Safety (ANSES), Ploufragan, France
| | - Marion Desdouits
- Ifremer, laboratoire de Microbiologie, SG2M/LSEM, BP 21105, Nantes, France
| | - Sophie Rocq
- Ifremer, laboratoire de Microbiologie, SG2M/LSEM, BP 21105, Nantes, France
| | | | - Yannick Blanchard
- Viral Genetics and Biosecurity Unit (GVB), French Agency for Food, Environmental and Occupational Health Safety (ANSES), Ploufragan, France
| |
Collapse
|
5
|
Hume J, Sweeney EL, Lowry K, Fraser C, Clark JE, Whiley DM, Irwin AD. Cytomegalovirus in children undergoing haematopoietic stem cell transplantation: a diagnostic and therapeutic approach to antiviral resistance. Front Pediatr 2023; 11:1180392. [PMID: 37325366 PMCID: PMC10267881 DOI: 10.3389/fped.2023.1180392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Cytomegalovirus (CMV) is a ubiquitous virus which causes a mild illness in healthy individuals. In immunocompromised individuals, such as children receiving haematopoietic stem cell transplantation, CMV can reactivate, causing serious disease and increasing the risk of death. CMV can be effectively treated with antiviral drugs, but antiviral resistance is an increasingly common complication. Available therapies are associated with adverse effects such as bone marrow suppression and renal impairment, making the choice of appropriate treatment challenging. New agents are emerging and require evaluation in children to establish their role. This review will discuss established and emerging diagnostic tools and treatment options for CMV, including antiviral resistant CMV, in children undergoing haematopoietic stem cell transplant.
Collapse
Affiliation(s)
- Jocelyn Hume
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Central Microbiology, Pathology Queensland, Brisbane, QLD, Australia
| | - Emma L. Sweeney
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Kym Lowry
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Chris Fraser
- Blood and Bone Marrow Transplant Program, Queensland Children’s Hospital, Brisbane, QLD, Australia
| | - Julia E. Clark
- Infection Management and Prevention Service, Queensland Children’s Hospital, Brisbane, QLD, Australia
| | - David M. Whiley
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Central Microbiology, Pathology Queensland, Brisbane, QLD, Australia
| | - Adam D. Irwin
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Infection Management and Prevention Service, Queensland Children’s Hospital, Brisbane, QLD, Australia
| |
Collapse
|
6
|
Ribeiro IP, Nascimento LGD, Tort LFL, Pereira EC, Menezes LSR, Malta FC, Oliveira BCEPDD, Rodrigues JP, Manso PPDA, Pelajo M, Bonaldo MC, Silva PCR, Siqueira MM, Brasil P, Fumian TM. Infectious SARS-CoV-2 Particles from Rectal Swab Samples from COVID-19 Patients in Brazil. Viruses 2023; 15:v15051152. [PMID: 37243238 DOI: 10.3390/v15051152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The main objective of this study was to investigate the dynamic of SARS-CoV-2 viral excretion in rectal swab (RS), saliva, and nasopharyngeal swab (NS) samples from symptomatic patients and asymptomatic contacts. In addition, in order to evaluate the replication potential of SARS-CoV-2 in the gastrointestinal (GI) tract and the excretion of infectious SARS-CoV-2 from feces, we investigated the presence of subgenomic nucleoprotein gene (N) mRNA (sgN) in RS samples and cytopathic effects in Vero cell culture. A prospective cohort study was performed to collect samples from symptomatic patients and contacts in Rio de Janeiro, Brazil, from May to October 2020. One hundred and seventy-six patients had samples collected at home visits and/or during the follow up, resulting in a total of 1633 RS, saliva, or NS samples. SARS-CoV-2 RNA was detected in 130 (73.9%) patients who had at least one sample that tested positive for SARS-CoV-2. The presence of replicating SARS-CoV-2 in RS samples, measured by the detection of sgN mRNA, was successfully achieved in 19.4% (6/31) of samples, whilst infectious SARS-CoV-2, measured by the generation of cytopathic effects in cell culture, was identified in only one RS sample. Although rare, our results demonstrated the replication capacity of SARS-CoV-2 in the GI tract, and infectious viruses in one RS sample. There is still a gap in the knowledge regarding SARS-CoV-2 fecal-oral transmission. Additional studies are warranted to investigate fecal or wastewater exposure as a risk factor for transmission in human populations.
Collapse
Affiliation(s)
- Ieda Pereira Ribeiro
- Laboratório de Medicina Experimental e Saúde, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil
| | - Lilian Gonçalves do Nascimento
- Laboratório de Virologia Comparada e Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil
| | - Luis Fernando Lopez Tort
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil
- Laboratório de Virologia Molecular, Universidad de la República, Centro Universitario Regional Litoral Norte, Salto 50000, Uruguay
| | - Elisa Cavalcante Pereira
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil
| | - Lidiane Souza Raphael Menezes
- Laboratório de Medicina Experimental e Saúde, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil
| | - Fabio Correia Malta
- Laboratório de Virologia Comparada e Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil
| | | | - João Paulo Rodrigues
- Laboratório de Medicina Experimental e Saúde, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil
| | - Pedro Paulo de Abreu Manso
- Laboratório de Medicina Experimental e Saúde, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil
| | - Marcelo Pelajo
- Laboratório de Medicina Experimental e Saúde, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil
| | - Myrna Cristina Bonaldo
- Laboratório de Medicina Experimental e Saúde, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil
| | - Paola Cristina Resende Silva
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil
| | - Marilda Mendonça Siqueira
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil
| | - Patricia Brasil
- Laboratório de Doenças Febris Agudas, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil
| | - Tulio Machado Fumian
- Laboratório de Virologia Comparada e Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil
| |
Collapse
|
7
|
Mi L, Han J, Xu T, Wang X, Qiao L, Jia T, Gan X. Evaluating Whether and How Public Health Event Information Frameworks Promote Pro-Environmental Behavior. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3721. [PMID: 36834413 PMCID: PMC9966980 DOI: 10.3390/ijerph20043721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
The major public health emergencies (PHEs) represented by the COVID-19 pandemic, while posing a serious threat to human health, have led people to rethink about the harmonious relationship between humans and nature. It is worthy to explore whether and how the framework effect of event information can be used to turn crises into opportunities to promote public pro-environmental behavior (PEB). Through a pre-and post-test control experiment, this study took the COVID-19 pandemic as a case, to explore the effects of four PHE information frameworks on promoting PEB, coupled with two information loss-gain frameworks and two information content frameworks. The results showed that all four information frameworks contribute to the public PEB. However, there are differences: only the environmental gain information effect is significant for PEB in the private sphere. The environmental loss and health gain information are effective for PEB in organizations. However, in the public sphere, all four information frameworks significantly motivate PEB. Further factorial analysis revealed that the interaction between the information content and loss-gain framework was not significant, with the latter playing the dominant role. These findings provide a new approach to how to develop the information framework effect and turn crises into opportunities to promote public PEB in the context of major PHEs.
Collapse
Affiliation(s)
- Lingyun Mi
- School of Economics and Management, China University of Mining and Technology, Xuzhou 221116, China
| | - Jiali Han
- School of Economics and Management, China University of Mining and Technology, Xuzhou 221116, China
| | - Ting Xu
- School of Economics and Management, China University of Mining and Technology, Xuzhou 221116, China
| | - Xuejiao Wang
- School of Economics and Management, China University of Mining and Technology, Xuzhou 221116, China
| | - Lijie Qiao
- School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Tianwen Jia
- School of Economics and Management, China University of Mining and Technology, Xuzhou 221116, China
| | - Xiaoli Gan
- School of Economics and Management, China University of Mining and Technology, Xuzhou 221116, China
| |
Collapse
|
8
|
Gartland N, Fishwick D, Coleman A, Davies K, Hartwig A, Johnson S, van Tongeren M. Transmission and control of SARS-CoV-2 on ground public transport: A rapid review of the literature up to May 2021. JOURNAL OF TRANSPORT & HEALTH 2022; 26:101356. [PMID: 35261878 PMCID: PMC8894738 DOI: 10.1016/j.jth.2022.101356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 05/09/2023]
Abstract
Background During a pandemic, public transport is strategically important for keeping the country going and getting people where they need to be. The essential nature of public transport puts into focus the risk of transmission of SARS-CoV-2 in this sector; rapid and diverse work has been done to attempt to understand how transmission happens in this context and what factors influence risk. Objectives This review aimed to provide a narrative overview of the literature assessing transmission, or potential for transmission, of SARS-CoV-2 on ground-based public transport, as well as studies assessing the effectiveness of control measures on public transport during the early part of the pandemic (up to May 2021). Methods An electronic search was conducted using Web of Science, Ovid, the Cochrane Library, ProQuest, Pubmed, and the WHO global COVID database. Searches were run between December 2020 and May 2021. Results The search strategy identified 734 papers, of which 28 papers met the inclusion criteria for the review; 10 papers assessed transmission of SARS-CoV-2, 11 assessed control measures, and seven assessed levels of contamination. Eleven papers were based on modelling approaches; 17 studies were original studies reporting empirical COVID-19 data. Conclusions The literature is heterogeneous, and there are challenges for measurement of transmission in this setting. There is evidence for transmission in certain cases, and mixed evidence for the presence of viral RNA in transport settings; there is also evidence for some reduction of risk through mitigation. However, the routes of transmission and key factors contributing to transmission of SARS-CoV-2 on public transport were not clear during the early stage of the pandemic. Gaps in understanding are discussed and six key questions for future research have been posed. Further exploration of transmission factors and effectiveness of mitigation strategies is required in order to support decision making.
Collapse
Affiliation(s)
- Nicola Gartland
- School of Health Sciences, University of Manchester, Manchester, United Kingdom
| | - David Fishwick
- School of Health Sciences, University of Manchester, Manchester, United Kingdom
| | - Anna Coleman
- School of Health Sciences, University of Manchester, Manchester, United Kingdom
| | - Karen Davies
- School of Health Sciences, University of Manchester, Manchester, United Kingdom
| | - Angelique Hartwig
- Alliance Manchester Business School, University of Manchester, Manchester, United Kingdom
| | - Sheena Johnson
- Alliance Manchester Business School, University of Manchester, Manchester, United Kingdom
| | - Martie van Tongeren
- School of Health Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
9
|
Delgado Corrales B, Kaiser R, Nerlich P, Agraviador A, Sherry A. BioMateriOME: To understand microbe-material interactions within sustainable, living architectures. ADVANCES IN APPLIED MICROBIOLOGY 2022; 122:77-126. [PMID: 37085194 DOI: 10.1016/bs.aambs.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BioMateriOME evolved from a prototyping process which was informed from discussions between a team of designers, architects and microbiologists, when considering constructing with biomaterials or human cohabitation with novel living materials in the built environment. The prototype has two elements (i) BioMateriOME-Public (BMP), an interactive public materials library, and (ii) BioMateriOME-eXperimental (BMX), a replicated materials library for rigorous microbiome experimentation. The prototype was installed into the OME, a unique experimental living house, in order to (1) gain insights into society's perceptions of living materials, and (2) perform a comparative analysis of indoor surface microbiome development on novel biomaterials in contrast to conventional indoor surfaces, respectively. This review summarizes the BioMateriOME prototype and its use as a tool in combining microbiology, design, architecture and social science. The use of microbiology and biological components in the fabrication of biomaterials is provided, together with an appreciation of the microbial communities common to conventional indoor surfaces, and how these communities may change in response to the implementation of living materials in our homes. Societal perceptions of microbiomes and biomaterials, are considered within the framework of healthy architecture. Finally, features of architectural design with microbes in mind are introduced, with the possibility of codifying microbial surveillance into design and construction benchmarks, standards and regulations toward healthier buildings and their occupants.
Collapse
Affiliation(s)
- Beatriz Delgado Corrales
- Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Romy Kaiser
- Hub for Biotechnology in the Built Environment, School of Architecture, Planning and Landscape, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Paula Nerlich
- Hub for Biotechnology in the Built Environment, School of Architecture, Planning and Landscape, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Armand Agraviador
- Hub for Biotechnology in the Built Environment, School of Architecture, Planning and Landscape, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Angela Sherry
- Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
10
|
Cuevas-Ferrando E, Randazzo W, Pérez-Cataluña A, Falcó I, Navarro D, Martin-Latil S, Díaz-Reolid A, Girón-Guzmán I, Allende A, Sánchez G. Platinum chloride-based viability RT-qPCR for SARS-CoV-2 detection in complex samples. Sci Rep 2021; 11:18120. [PMID: 34518622 PMCID: PMC8438079 DOI: 10.1038/s41598-021-97700-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/24/2021] [Indexed: 01/04/2023] Open
Abstract
Isolation, contact tracing and restrictions on social movement are being globally implemented to prevent and control onward spread of SARS-CoV-2, even though the infection risk modelled on RNA detection by RT-qPCR remains biased as viral shedding and infectivity are not discerned. Thus, we aimed to develop a rapid viability RT-qPCR procedure to infer SARS-CoV-2 infectivity in clinical specimens and environmental samples. We screened monoazide dyes and platinum compounds as viability molecular markers on five SARS-CoV-2 RNA targets. A platinum chloride-based viability RT-qPCR was then optimized using genomic RNA, and inactivated SARS-CoV-2 particles inoculated in buffer, stool, and urine. Our results were finally validated in nasopharyngeal swabs from persons who tested positive for COVID-19 and in wastewater samples positive for SARS-CoV-2 RNA. We established a rapid viability RT-qPCR that selectively detects potentially infectious SARS-CoV-2 particles in complex matrices. In particular, the confirmed positivity of nasopharyngeal swabs following the viability procedure suggests their potential infectivity, while the complete prevention of amplification in wastewater indicated either non-infectious particles or free RNA. The viability RT-qPCR approach provides a more accurate ascertainment of the infectious viruses detection and it may complement analyses to foster risk-based investigations for the prevention and control of new or re-occurring outbreaks with a broad application spectrum.
Collapse
Affiliation(s)
- Enric Cuevas-Ferrando
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| | - Walter Randazzo
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980, Paterna, Valencia, Spain
| | - Alba Pérez-Cataluña
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980, Paterna, Valencia, Spain
| | - Irene Falcó
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980, Paterna, Valencia, Spain
| | - David Navarro
- Microbiology Service, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
- Department of Microbiology, School of Medicine, University of Valencia, Valencia, Spain
| | - Sandra Martin-Latil
- ANSES Laboratory for Food Safety, Université Paris-Est, 94700, Maisons-Alfort, France
| | - Azahara Díaz-Reolid
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980, Paterna, Valencia, Spain
| | - Inés Girón-Guzmán
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980, Paterna, Valencia, Spain
| | - Ana Allende
- Research Group on Quality and Safety of Fruits and Vegetables, Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 25, 30100, Murcia, Spain
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980, Paterna, Valencia, Spain
| |
Collapse
|
11
|
Cuevas-Ferrando E, Randazzo W, Pérez-Cataluña A, Falcó I, Navarro D, Martin-Latil S, Díaz-Reolid A, Girón-Guzmán I, Allende A, Sánchez G. Platinum chloride-based viability RT-qPCR for SARS-CoV-2 detection in complex samples. Sci Rep 2021; 11:18120. [PMID: 34518622 DOI: 10.1101/2021.03.22.21253818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/24/2021] [Indexed: 05/21/2023] Open
Abstract
Isolation, contact tracing and restrictions on social movement are being globally implemented to prevent and control onward spread of SARS-CoV-2, even though the infection risk modelled on RNA detection by RT-qPCR remains biased as viral shedding and infectivity are not discerned. Thus, we aimed to develop a rapid viability RT-qPCR procedure to infer SARS-CoV-2 infectivity in clinical specimens and environmental samples. We screened monoazide dyes and platinum compounds as viability molecular markers on five SARS-CoV-2 RNA targets. A platinum chloride-based viability RT-qPCR was then optimized using genomic RNA, and inactivated SARS-CoV-2 particles inoculated in buffer, stool, and urine. Our results were finally validated in nasopharyngeal swabs from persons who tested positive for COVID-19 and in wastewater samples positive for SARS-CoV-2 RNA. We established a rapid viability RT-qPCR that selectively detects potentially infectious SARS-CoV-2 particles in complex matrices. In particular, the confirmed positivity of nasopharyngeal swabs following the viability procedure suggests their potential infectivity, while the complete prevention of amplification in wastewater indicated either non-infectious particles or free RNA. The viability RT-qPCR approach provides a more accurate ascertainment of the infectious viruses detection and it may complement analyses to foster risk-based investigations for the prevention and control of new or re-occurring outbreaks with a broad application spectrum.
Collapse
Affiliation(s)
- Enric Cuevas-Ferrando
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| | - Walter Randazzo
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980, Paterna, Valencia, Spain
| | - Alba Pérez-Cataluña
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980, Paterna, Valencia, Spain
| | - Irene Falcó
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980, Paterna, Valencia, Spain
| | - David Navarro
- Microbiology Service, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
- Department of Microbiology, School of Medicine, University of Valencia, Valencia, Spain
| | - Sandra Martin-Latil
- ANSES Laboratory for Food Safety, Université Paris-Est, 94700, Maisons-Alfort, France
| | - Azahara Díaz-Reolid
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980, Paterna, Valencia, Spain
| | - Inés Girón-Guzmán
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980, Paterna, Valencia, Spain
| | - Ana Allende
- Research Group on Quality and Safety of Fruits and Vegetables, Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 25, 30100, Murcia, Spain
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980, Paterna, Valencia, Spain
| |
Collapse
|