1
|
Manchuri KM, Shaik MA, Gopireddy VSR, Naziya Sultana, Gogineni S. Analytical Methodologies to Detect N-Nitrosamine Impurities in Active Pharmaceutical Ingredients, Drug Products and Other Matrices. Chem Res Toxicol 2024; 37:1456-1483. [PMID: 39158368 DOI: 10.1021/acs.chemrestox.4c00234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Since 2018, N-nitrosamine impurities have become a widespread concern in the global regulatory landscape of pharmaceutical products. This concern arises due to their potential for contamination, toxicity, carcinogenicity, and mutagenicity and their presence in many active pharmaceutical ingredients, drug products, and other matrices. N-Nitrosamine impurities in humans can lead to severe chemical toxicity effects. These include carcinogenic effects, metabolic disruptions, reproductive harm, liver diseases, obesity, DNA damage, cell death, chromosomal alterations, birth defects, and pregnancy loss. They are particularly known to cause cancer (tumors) in various organs and tissues such as the liver, lungs, nasal cavity, esophagus, pancreas, stomach, urinary bladder, colon, kidneys, and central nervous system. Additionally, N-nitrosamine impurities may contribute to the development of Alzheimer's and Parkinson's diseases and type-2 diabetes. Therefore, it is very important to control or avoid them by enhancing effective analytical methodologies using cutting-edge analytical techniques such as LC-MS, GC-MS, CE-MS, SFC, etc. Moreover, these analytical methods need to be sensitive and selective with suitable precision and accuracy, so that the actual amounts of N-nitrosamine impurities can be detected and quantified appropriately in drugs. Regulatory agencies such as the US FDA, EMA, ICH, WHO, etc. need to focus more on the hazards of N-nitrosamine impurities by providing guidance and regular updates to drug manufacturers and applicants. Similarly, drug manufacturers should be more vigilant to avoid nitrosating agents and secondary amines during the manufacturing processes. Numerous review articles have been published recently by various researchers, focusing on N-nitrosamine impurities found in previously notified products, including sartans, metformin, and ranitidine. These impurities have also been detected in a wide range of other products. Consequently, this review aims to concentrate on products recently reported to contain N-nitrosamine impurities. These products include rifampicin, champix, famotidine, nizatidine, atorvastatin, bumetanide, itraconazole, diovan, enalapril, propranolol, lisinopril, duloxetine, rivaroxaban, pioglitazones, glifizones, cilostazol, and sunitinib.
Collapse
Affiliation(s)
- Krishna Moorthy Manchuri
- Department of Chemistry, Jawaharlal Nehru Technological University Anantapur, Ananthapuramu, Andhra Pradesh 515002, India
| | - Mahammad Ali Shaik
- Department of Chemistry, Jawaharlal Nehru Technological University Anantapur, Ananthapuramu, Andhra Pradesh 515002, India
| | - Venkata Subba Reddy Gopireddy
- Department of Chemistry, Jawaharlal Nehru Technological University Anantapur, Ananthapuramu, Andhra Pradesh 515002, India
| | - Naziya Sultana
- Analytical Research and Development, IPDO, Dr. Reddy's Laboratories Limited, Hyderabad 500090, India
| | - Sreenivasarao Gogineni
- Department of Chemistry, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, Andhra Pradesh 522510, India
| |
Collapse
|
2
|
Sun M, Peng Z, Shen W, Guo X, Liao Y, Huang Y, Ye P, Hu M, Lin Q, Liu R. Synergism of Fusobacterium periodonticum and N-nitrosamines promote the formation of EMT subtypes in ESCC by modulating Wnt3a palmitoylation. Gut Microbes 2024; 16:2391521. [PMID: 39193618 PMCID: PMC11364064 DOI: 10.1080/19490976.2024.2391521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/17/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024] Open
Abstract
N-Nitrosamine disinfection by-products (NAs-DBPs) have been well proven for its role in esophageal carcinogenesis. However, the role of intratumoral microorganisms in esophageal squamous cell carcinoma (ESCC) has not yet been well explored in the context of exposure to NAs-DBPs. Here, the multi-omics integration reveals F. periodonticum (Fp) as "facilitators" is highly enriched in cancer tissues and promotes the epithelial mesenchymal transition (EMT)-like subtype formation of ESCC. We demonstrate that Fp potently drives de novo synthesis of fatty acids, migration, invasion and EMT phenotype through its unique FadAL adhesin. However, N-nitrosomethylbenzylamine upregulates the transcription level of FadAL. Mechanistically, co-immunoprecipitation coupled to mass spectrometry shows that FadAL interacts with FLOT1. Furthermore, FLOT1 activates PI3K-AKT/FASN signaling pathway, leading to triglyceride and palmitic acid (PA) accumulation. Innovatively, the results from the acyl-biotin exchange demonstrate that FadAL-mediated PA accumulation enhances Wnt3A palmitoylation on a conserved cysteine residue, Cys-77, and promotes Wnt3A membrane localization and the translocation of β-catenin into the nucleus, further activating Wnt3A/β-catenin axis and inducing EMT phenotype. We therefore propose a "microbiota-cancer cell subpopulation" interaction model in the highly heterogeneous tumor microenvironment. This study unveils a mechanism by which Fp can drive ESCC and identifies FadAL as a potential diagnostic and therapeutic target for ESCC.
Collapse
Affiliation(s)
- Mingjun Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Zhenyan Peng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Weitao Shen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Xinxin Guo
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yinghao Liao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yang Huang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Ping Ye
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Mohan Hu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Qiang Lin
- Department of Oncology, North China Petroleum Bureau General Hospital, Hebei Medical University, Renqiu, China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
3
|
Kaur R, Kaur L, Gupta TB, Bronlund J. Mānuka Oil vs. Rosemary Oil: Antimicrobial Efficacies in Wagyu and Commercial Beef against Selected Pathogenic Microbes. Foods 2023; 12:foods12061333. [PMID: 36981259 PMCID: PMC10048739 DOI: 10.3390/foods12061333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Essential oils possessing antimicrobial characteristics have acquired considerable interest as an alternative to chemical preservatives in food products. This research hypothesizes that mānuka (MO) and kānuka (KO) oils may possess antimicrobial characteristics and have the potential to be used as natural preservatives for food applications. Initial experimentation was conducted to characterize MOs (with 5, 25, and 40% triketone contents), rosemary oil (RO) along with kanuka oil (KO) for their antibacterial efficacy against selected Gram-negative (Salmonella spp. and Escherichia coli), and Gram-positive (Listeria monocytogenes and Staphylococcus aureus) bacteria through disc diffusion and broth dilution assays. All MOs showed a higher antimicrobial effect against L. monocytogenes and S. aureus with a minimum inhibitory concentration below 0.04%, compared with KO (0.63%) and RO (2.5%). In chemical composition, α-pinene in KO, 1, 8 cineole in RO, calamenene, and leptospermone in MO were the major compounds, confirmed through Gas-chromatography-mass spectrometry analysis. Further, the antimicrobial effect of MO and RO in vacuum-packed beef pastes prepared from New Zealand commercial breed (3% fat) and wagyu (12% fat) beef tenderloins during 16 days of refrigerated storage was compared with sodium nitrate (SN) and control (without added oil). In both meat types, compared with the SN-treated and control samples, lower growth of L. monocytogenes and S. aureus in MO- and RO- treated samples was observed. However, for Salmonella and E. coli, RO treatment inhibited microbial growth most effectively. The results suggest the potential use of MO as a partial replacement for synthetic preservatives like sodium nitrate in meats, especially against L. monocytogenes and S. aureus.
Collapse
Affiliation(s)
- Ramandeep Kaur
- School of Food and Advanced Technology, Massey University, Palmerston North 4442, New Zealand
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand
| | - Lovedeep Kaur
- School of Food and Advanced Technology, Massey University, Palmerston North 4442, New Zealand
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand
| | - Tanushree B Gupta
- Food System Integrity Team, Hopkirk Research Institute, AgResearch Ltd., Palmerston North 4472, New Zealand
| | - John Bronlund
- School of Food and Advanced Technology, Massey University, Palmerston North 4442, New Zealand
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand
| |
Collapse
|
4
|
Moradpour Z, Abdolmaleki P, Hajipour-Verdom B, Khavanin A, Panjali Z, Maghsudi N, Hamidi M, Zendehdel R. DNA breaks evaluation of two water-based metalworking fluids by an occupational exposure design. TOXIN REV 2023. [DOI: 10.1080/15569543.2022.2163663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Zahra Moradpour
- Department of Occupational Health and Safety Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parviz Abdolmaleki
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Behnam Hajipour-Verdom
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Khavanin
- Department of Occupational Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Panjali
- Department of Occupational Health Engineering, Faculty of Health and Medical Engineering, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nader Maghsudi
- Neuroscience Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Mansoureh Hamidi
- Department of Occupational Health and Safety Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rezvan Zendehdel
- Department of Occupational Health and Safety Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Shi Z, Rao L, Wang P, Zhang L. The photocatalytic activity and purification performance of g-C 3N 4/carbon nanotubes composite photocatalyst in underwater environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:83981-83992. [PMID: 35776310 DOI: 10.1007/s11356-022-21535-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Graphite carbon nitride (g-C3N4) is a promising photocatalyst for its high catalytic activity, low-cost and high-biosafety characteristics. Due to the complexity of underwater photochemical reaction conditions and the disadvantages of g-C3N4 itself such as low specific surface area, easy recombination of photogenerated electron-hole pairs and insufficient light absorption capacity, the application of g-C3N4 in the field of water purification is limited. For improving underwater photocatalytic performance of g-C3N4, a g-C3N4/carbon nanotubes (CNT-CN) composite photocatalyst with high specific surface area and enhanced light absorption capacity were prepared by in situ solvothermal method. Its photodegradation efficiency at different underwater transmission light was further studied. The results show that CNT has good compatibility with g-C3N4. g-C3N4 can grow in situ on the surface of CNT and form a stable composite structure. Moreover, its degradation efficiency under long-wavelength irradiation is improved significantly. The degradation rate of CNT-CN at 550-700 nm was about 3 times than that of g-C3N4. Furthermore, CNT-CN can maintain higher photocatalytic activity under water. At 40 cm depth where light intensity and ultraviolet spectra were attenuated 63.8% and 80.1%, respectively, the degradation rate of CNT-CN3 can still reach 3.49 times than that of g-C3N4. Based on this study, the introduction of CNT effectively promotes the electron-hole separation efficiency of g-C3N4, widens its spectral response range, and thus improves its underwater degradation efficiency.
Collapse
Affiliation(s)
- Zhenyu Shi
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Lei Rao
- College of Mechanics and Materials, Hohai University, Nanjing, 210098, China.
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Lixin Zhang
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
6
|
Studies on a novel method for the determination of nitrosamines in food by HPLC-UV-FLD coupling with terbium-doped carbon dots. Food Chem 2022. [DOI: 10.1016/j.foodchem.2022.134894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
Di Nunzio M, Loffi C, Montalbano S, Chiarello E, Dellafiora L, Picone G, Antonelli G, Tedeschi T, Buschini A, Capozzi F, Galaverna G, Bordoni A. Cleaning the Label of Cured Meat; Effect of the Replacement of Nitrates/Nitrites on Nutrients Bioaccessibility, Peptides Formation, and Cellular Toxicity of In Vitro Digested Salami. Int J Mol Sci 2022; 23:12555. [PMID: 36293416 PMCID: PMC9604274 DOI: 10.3390/ijms232012555] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 09/04/2024] Open
Abstract
Curing salts composed of mixtures of nitrates and nitrites are preservatives widely used in processed meats. Despite many desirable technological effects, their use in meat products has been linked to methemoglobinemia and the formation of nitrosamines. Therefore, an increasing "anti-nitrite feeling" has grown among meat consumers, who search for clean label products. In this view, the use of natural compounds as alternatives represents a challenge for the meat industry. Processing (including formulation and fermentation) induces chemical or physical changes of food matrix that can modify the bioaccessibility of nutrients and the formation of peptides, impacting on the real nutritional value of food. In this study we investigated the effect of nitrate/nitrite replacement with a combination of polyphenols, ascorbate, and nitrate-reducing microbial starter cultures on the bioaccessibility of fatty acids, the hydrolysis of proteins and the release of bioactive peptides after in vitro digestion. Moreover, digested salami formulations were investigated for their impacts on cell proliferation and genotoxicity in the human intestinal cellular model (HT-29 cell line). The results indicated that a replacement of synthetic nitrates/nitrites with natural additives can represent a promising strategy to develop innovative "clean label" salamis without negatively affecting their nutritional value.
Collapse
Affiliation(s)
- Mattia Di Nunzio
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Cecilia Loffi
- Department of Food and Drugs, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
- SSICA-Stazione Sperimentale per l’Industria delle Conserve Alimentari, Viale Faustino Tanara 31/A, 43121 Parma, Italy
| | - Serena Montalbano
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
- COMT (Interdepartmental Centre for Molecular and Translational Oncology), University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Elena Chiarello
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Luca Dellafiora
- Department of Food and Drugs, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Gianfranco Picone
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Giorgia Antonelli
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Tullia Tedeschi
- Department of Food and Drugs, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Annamaria Buschini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
- COMT (Interdepartmental Centre for Molecular and Translational Oncology), University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Francesco Capozzi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
- Interdepartmental Centre for Industrial Agri-Food Research (CIRI), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Gianni Galaverna
- Department of Food and Drugs, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Alessandra Bordoni
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
- Interdepartmental Centre for Industrial Agri-Food Research (CIRI), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| |
Collapse
|
8
|
Zhao C, Zhang H, Zhou J, Liu Q, Lu Q, Zhang Y, Yu X, Wang S, Liu R, Pu Y, Yin L. Metabolomic transition trajectory and potential mechanisms of N-nitrosomethylbenzylamine induced esophageal squamous cell carcinoma in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114071. [PMID: 36113270 DOI: 10.1016/j.ecoenv.2022.114071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/31/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is an environment-relevant malignancy with a high mortality. Nitrosamines, a class of nitrogen-containing environmental carcinogens, are widely suggested as a risk factor for ESCC. However, how nitrosamines affect metabolic regulation to promote ESCC tumorigenesis is largely unknown. In this study, the transition trajectory of serum metabolism in the course of ESCC induced by N-nitrosomethylbenzylamine (NMBA) in rats was depicted by an untargeted metabolomic analysis, and the potential molecular mechanisms were revealed. The results showed that the metabolic alteration in rats was slight at the basal cell hyperplasia (BCH) stage, while it became apparent when the esophageal lesion developed into dysplasia (DYS) or more serious conditions. Moreover, serum metabolism of severe dysplasia (S-DYS) showed more similar characteristics to that of carcinoma in situ (CIS) and invasive cancer (IC). Aberrant nicotinate (NA) and nicotinamide (NAM) metabolism, tryptophan (TRP) metabolism, and sphingolipid metabolism could be the key players favoring the malignant transformation of esophageal epithelium induced by NMBA. More particularly, NA and NAM metabolism in the precancerous stages and TRP metabolism in the cancerous stages were demonstrated to replenish NAD+ in different patterns. Furthermore, both the IDO1-KYN-AHR axis mediated by TRP metabolism and the SPHK1-S1P-S1PR1 axis by sphingolipid metabolism provided an impetus to create the pro-inflammatory yet immune-suppressive microenvironment to facilitate the esophageal tumorigenesis and progression. Together, these suggested that NMBA exerted its carcinogenicity via more than one pathway, which may act together to produce combination effects. Targeting these pathways may open up the possibility to attenuate NMBA-induced esophageal carcinogenesis. However, the interconnection between different metabolic pathways needs to be specified further. And the integrative and multi-level systematic research will be conducive to fully understanding the mechanisms of NMBA-induced ESCC.
Collapse
Affiliation(s)
- Chao Zhao
- School of Public Health, Southeast University, Nanjing 210009 Jiangsu, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, Southeast University, Nanjing 210009 Jiangsu, China; School of Nursing & School of Public Health, Yangzhou University, Yangzhou 225000, China
| | - Hu Zhang
- School of Public Health, Southeast University, Nanjing 210009 Jiangsu, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, Southeast University, Nanjing 210009 Jiangsu, China
| | - Jingjing Zhou
- School of Public Health, Southeast University, Nanjing 210009 Jiangsu, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, Southeast University, Nanjing 210009 Jiangsu, China
| | - Qiwei Liu
- School of Public Health, Southeast University, Nanjing 210009 Jiangsu, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, Southeast University, Nanjing 210009 Jiangsu, China
| | - Qiang Lu
- School of Public Health, Southeast University, Nanjing 210009 Jiangsu, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, Southeast University, Nanjing 210009 Jiangsu, China
| | - Ying Zhang
- School of Public Health, Southeast University, Nanjing 210009 Jiangsu, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, Southeast University, Nanjing 210009 Jiangsu, China
| | - Xiaojin Yu
- School of Public Health, Southeast University, Nanjing 210009 Jiangsu, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, Southeast University, Nanjing 210009 Jiangsu, China
| | - Shizhi Wang
- School of Public Health, Southeast University, Nanjing 210009 Jiangsu, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, Southeast University, Nanjing 210009 Jiangsu, China
| | - Ran Liu
- School of Public Health, Southeast University, Nanjing 210009 Jiangsu, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, Southeast University, Nanjing 210009 Jiangsu, China
| | - Yuepu Pu
- School of Public Health, Southeast University, Nanjing 210009 Jiangsu, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, Southeast University, Nanjing 210009 Jiangsu, China
| | - Lihong Yin
- School of Public Health, Southeast University, Nanjing 210009 Jiangsu, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, Southeast University, Nanjing 210009 Jiangsu, China.
| |
Collapse
|
9
|
Tian H, Zhang T, Qin S, Huang Z, Zhou L, Shi J, Nice EC, Xie N, Huang C, Shen Z. Enhancing the therapeutic efficacy of nanoparticles for cancer treatment using versatile targeted strategies. J Hematol Oncol 2022; 15:132. [PMID: 36096856 PMCID: PMC9469622 DOI: 10.1186/s13045-022-01320-5] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/20/2022] [Indexed: 12/24/2022] Open
Abstract
Poor targeting of therapeutics leading to severe adverse effects on normal tissues is considered one of the obstacles in cancer therapy. To help overcome this, nanoscale drug delivery systems have provided an alternative avenue for improving the therapeutic potential of various agents and bioactive molecules through the enhanced permeability and retention (EPR) effect. Nanosystems with cancer-targeted ligands can achieve effective delivery to the tumor cells utilizing cell surface-specific receptors, the tumor vasculature and antigens with high accuracy and affinity. Additionally, stimuli-responsive nanoplatforms have also been considered as a promising and effective targeting strategy against tumors, as these nanoplatforms maintain their stealth feature under normal conditions, but upon homing in on cancerous lesions or their microenvironment, are responsive and release their cargoes. In this review, we comprehensively summarize the field of active targeting drug delivery systems and a number of stimuli-responsive release studies in the context of emerging nanoplatform development, and also discuss how this knowledge can contribute to further improvements in clinical practice.
Collapse
Affiliation(s)
- Hailong Tian
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Tingting Zhang
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jiayan Shi
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, 3800, VIC, Australia
| | - Edouard C Nice
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan university, Chengdu, 610041, China
| | - Na Xie
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China. .,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China. .,West China School of Basic Medical Sciences and Forensic Medicine, Sichuan university, Chengdu, 610041, China.
| | - Canhua Huang
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China. .,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.
| |
Collapse
|
10
|
Zhang H, Lu L, Zhao C, Liu Q, Zhou Q, Zhang Y, Pu Y, Wang S, Liu R, Yin L. Lipid metabolism disorders contribute to hepatotoxicity of ICR mice induced by nitrosamines exposure. ENVIRONMENT INTERNATIONAL 2022; 167:107423. [PMID: 35908391 DOI: 10.1016/j.envint.2022.107423] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Health risks caused by crucial environmental carcinogens N-nitrosamines triggered ubiquitous attention. As the liver exerted vital function through metabolic process, lipid metabolism disorders have been confirmed as potential drivers for toxicological effects, and the mechanisms of lipid regulation related to hepatotoxicity induced by N-nitrosamines remained largely unclear. In this study, we comprehensively explored the disturbance of hepatic lipid homeostasis in mice induced by nitrosamines. The results implied that nitrosamines exposure induced hepatotoxicity accompanied by liver injury, inflammatory infiltration, and hepatic edema. Lipidomics profiling analysis indicated the decreased levels of phosphatidic acids (PA), phosphatidylcholines (PC), phosphatidylethanolamines (PE), lyso-phosphatidylcholines (LPC), lyso-phosphatidylethanolamines (LPE), diacylglycerols (DAG) and triacylglycerols (TAG), the elevation of ceramides (Cer) and decomposition of free fatty acids (FFA) in high-dose nitrosamines exposure group. Importantly, nitrosamines exposure promoted fatty acid oxidation (FAO) by facilitating fatty acid uptake and decomposition, together with the upregulation of genes associated with FAO accompanied by the activation of inflammatory cytokines TNF-α, IL-1β and NLRP3. Furthermore, fatty acid translocase CD36-mediated fatty acid oxidation was correlated with the enhancement of oxidative stress in the liver caused by nitrosamines exposure. Overall, our results contributed to the new strategies to interpret the early toxic effects of nitrosamines exposure.
Collapse
Affiliation(s)
- Hu Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Lu Lu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Chao Zhao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Qiwei Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Qian Zhou
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Ying Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Shizhi Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, People's Republic of China.
| |
Collapse
|