1
|
Tian X, Ye C, Zhang L, Sugumar MK, Zhao Y, McKeown NB, Margadonna S, Tan R. Enhancing Membrane Materials for Efficient Li Recycling and Recovery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2402335. [PMID: 39676484 DOI: 10.1002/adma.202402335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/26/2024] [Indexed: 12/17/2024]
Abstract
Rapid uptake of lithium-centric technology, e.g., electric vehicles and large-scale energy storage, is increasing the demand for efficient technologies for lithium extraction from aqueous sources. Among various lithium-extraction technologies, membrane processes hold great promise due to energy efficiency and flexible operation in a continuous process with potential commercial viability. However, membrane separators face challenges such as the extraction efficiency due to the limited selectivity toward lithium relative to other species. Low selectivity can be ascribed to the uncontrollable selective channels and inefficient exclusion functions. However, recent selectivity enhancements for other membrane applications, such as in gas separation and energy storage, suggest that this may also be possible for lithium extraction. This review article focuses on the innovations in the membrane chemistries based on rational design following separation principles and unveiling the theories behind enhanced selectivity. Furthermore, recent progress in membrane-based lithium extraction technologies is summarized with the emphasis on inorganic, organic, and composite materials. The challenges and opportunities for developing the next generation of selective membranes for lithium recovery are also pointed out.
Collapse
Affiliation(s)
- Xingpeng Tian
- Warwick Electrochemical Engineering, WMG, University of Warwick, Coventry, CV4 7AL, UK
- EaStChem School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Chunchun Ye
- EaStChem School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Liyuan Zhang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Manoj K Sugumar
- Warwick Electrochemical Engineering, WMG, University of Warwick, Coventry, CV4 7AL, UK
| | - Yan Zhao
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Neil B McKeown
- EaStChem School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Serena Margadonna
- Department of Chemical Engineering, Swansea University, Swansea, SA1 8EN, UK
| | - Rui Tan
- Warwick Electrochemical Engineering, WMG, University of Warwick, Coventry, CV4 7AL, UK
- Department of Chemical Engineering, Swansea University, Swansea, SA1 8EN, UK
| |
Collapse
|
2
|
Bi Y, Dong J, Zhou Y, Zhang M, Chen X, Zhang Y. Application of membrane separation technology in the purification of pharmaceutical components. Prep Biochem Biotechnol 2024; 54:1107-1115. [PMID: 38526323 DOI: 10.1080/10826068.2024.2328673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Traditional Chinese medicine (TCM) is often composed of a variety of natural medicines. Its composition is complex, and many of its components can not be analyzed and identified. The first step in the rational application of TCM is to successfully separate the effective components which is also a great inspiration for the development of new drugs. Among the many separation technologies of TCM, the traditional heating concentration separation technology has high energy consumption and low efficiency. As a new separation technology, membrane separation technology has the characteristics of simple operation, high efficiency, environment-friendly and so on. The separation effect of high molecular weight difference solution is better. The applications of several main membrane separation technologies such as microfiltration, nanofiltration, ultrafiltration and reverse osmosis are reviewed, the methods of restoring membrane flux after membrane fouling are discussed, and their large-scale industrial applications in the future are prospected and summarized.
Collapse
Affiliation(s)
- Yun Bi
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingyi Dong
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yujia Zhou
- Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Manyue Zhang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xingying Chen
- Jiaxing Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Jiaxing, China
| | - Yuyan Zhang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
3
|
do Nascimento NN, Paraíso CM, Molina LCA, Dzyazko YS, Bergamasco R, Vieira AMS. Innovative Trends in Modified Membranes: A Mini Review of Applications and Challenges in the Food Sector. MEMBRANES 2024; 14:209. [PMID: 39452821 PMCID: PMC11509346 DOI: 10.3390/membranes14100209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024]
Abstract
Membrane technologies play a pivotal role in various industrial sectors, including food processing. Membranes act as barriers, selectively allowing the passage of one or other types of species. The separation processes that involve them offer advantages such as continuity, energy efficiency, compactness of devices, operational simplicity, and minimal consumption of chemical reagents. The efficiency of membrane separation depends on various factors, such as morphology, composition, and process parameters. Fouling, a significant limitation in membrane processes, leads to a decline in performance over time. Anti-fouling strategies involve adjustments to process parameters or direct modifications to the membrane, aiming to enhance efficiency. Recent research has focused on mitigating fouling, particularly in the food industry, where complex organic streams pose challenges. Membrane processes address consumer demands for natural and healthy products, contributing to new formulations with antioxidant properties. These trends align with environmental concerns, emphasizing sustainable practices. Despite numerous works on membrane modification, a research gap exists, especially with regard to the application of modified membranes in the food industry. This review aims to systematize information on modified membranes, providing insights into their practical application. This comprehensive overview covers membrane modification methods, fouling mechanisms, and distinct applications in the food sector. This study highlights the potential of modified membranes for specific tasks in the food industry and encourages further research in this promising field.
Collapse
Affiliation(s)
- Nicole Novelli do Nascimento
- Postgraduate Program in Food Science, Centre of Agrarian Sciences, State University of Maringa, Maringa 87020-900, PR, Brazil;
| | - Carolina Moser Paraíso
- Department of Chemical Engineering, State University of Maringa, Maringa 87020-900, PR, Brazil; (C.M.P.); (L.C.A.M.); (R.B.)
| | - Luiza C. A. Molina
- Department of Chemical Engineering, State University of Maringa, Maringa 87020-900, PR, Brazil; (C.M.P.); (L.C.A.M.); (R.B.)
| | - Yuliya S. Dzyazko
- V.I. Vernadskii Institute of General and Inorganic Chemistry of the NAS of Ukraine, Acad Palladin Ave. 32/34, 03142 Kyiv, Ukraine
| | - Rosângela Bergamasco
- Department of Chemical Engineering, State University of Maringa, Maringa 87020-900, PR, Brazil; (C.M.P.); (L.C.A.M.); (R.B.)
| | | |
Collapse
|
4
|
Gugliuzza A, Boi C. Editorial for the Special Issue "Preparation and Application of Advanced Functional Membranes". MEMBRANES 2024; 14:100. [PMID: 38786935 PMCID: PMC11122922 DOI: 10.3390/membranes14050100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024]
Abstract
Membrane science is a discipline that cuts across almost all fields of research and experimentation [...].
Collapse
Affiliation(s)
- Annarosa Gugliuzza
- Institute on Membrane Technology-National Research Council, CNR-ITM, Via Pietro Bucci 17C, 87036 Rende, Italy
| | - Cristiana Boi
- Department of Civil, Chemical, Environmental and Materials Engineering, Alma Mater Studiorum, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| |
Collapse
|
5
|
Mao D, Wu YY, Tu Y. Unexpectedly resisting protein adsorption on self-assembled monolayers terminated with two hydrophilic hydroxyl groups. Phys Chem Chem Phys 2023; 25:21376-21382. [PMID: 37530059 DOI: 10.1039/d3cp02376a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
OH-terminated self-assembled monolayers, as protein-resistant surfaces, have significant potential in biocompatible implant devices, which can avoid or reduce adverse reactions caused by protein adhesion to biomaterial surfaces, such as thrombosis, immune response and inflammation. Here, molecular dynamics simulations were performed to evaluate the degree of protein adsorption on the self-assembled monolayer terminated with two hydrophilic OH groups ((OH)2-SAM) at packing densities (Σ) of 4.5 nm-2 and 6.5 nm-2, respectively. The results show that the structure of the (OH)2-SAM itself, i.e., a nearly perfect hexagonal-ice-like hydrogen bond structure in the OH matrix of the (OH)2-SAM at Σ = 4.5 nm-2 sharply reduces the number of hydrogen bonds (i.e., 0.7 ± 0.27) formed between the hydrophobic (OH)2-SAM surface and protein. While for Σ = 6.5 nm-2, the hydrophilic (OH)2-SAM surface can provide more hydrogen bonding sites to form hydrogen bonds (i.e., 6.2 ± 1.07) with protein. The number of hydrogen bonds formed between the (OH)2-SAM and protein at Σ = 6.5 nm-2 is ∼8 times higher than that at Σ = 4.5 nm-2, reflecting the excellent resistance to protein adsorption exhibited by the structure of the (OH)2-SAM itself at Σ = 4.5 nm-2. Compared with a traditional physical barrier effect formed by a large number of hydrogen bonds between the (OH)2-SAM and water at Σ = 6.5 nm-2, the structure of the (OH)2-SAM itself at Σ = 4.5 nm-2 proposed in this study significantly improves the performance of the (OH)2-SAM resistance to protein adsorption, which provides new insights into the mechanism of resistance to protein adsorption on the (OH)2-SAM.
Collapse
Affiliation(s)
- Dangxin Mao
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China.
| | - Yuan-Yan Wu
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China.
| | - Yusong Tu
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China.
| |
Collapse
|
6
|
Behroozi AH, Vatanpour V, Meunier L, Mehrabi M, Koupaie EH. Membrane Fabrication and Modification by Atomic Layer Deposition: Processes and Applications in Water Treatment and Gas Separation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36898166 DOI: 10.1021/acsami.2c22627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Membrane-based separation processes are part of most water purification plants worldwide. Industrial separation applications, primarily water purification and gas separation, can be improved with novel membranes or modification to existing ones. Atomic layer deposition (ALD) is an emerging technique that is proposed to upgrade certain kinds of membranes independent of their chemistry and morphology. ALD deposits thin, defect-free, angstrom-scale, and uniform coating layers on a substrate's surface by reacting with gaseous precursors. The surface-modifying effects of ALD are described in the present review, followed by a description of various types of inorganic and organic barrier films and how these can be used in combination with ALD. The role of ALD in membrane fabrication and modification is categorized into different membrane-based groups according to the treated medium, i.e., water or gas. In all membrane types, the ALD-based direct deposition of inorganic materials, mainly metal oxides, on the membrane surface can improve antifouling, selectivity, permeability, and hydrophilicity. Therefore, the ALD technique can broaden the applications of membranes to the treatment of emerging contaminants in water and air. Finally, the advancement, limitations, and challenges of ALD-based membrane fabrication and modification are compared to provide a comprehensive guideline for developing next-generation membranes with improved filtration and separation performance.
Collapse
Affiliation(s)
- Amir Hossein Behroozi
- Department of Chemical Engineering, Queen's University, Kingston K7L 3N6, Ontario, Canada
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak 34469, Istanbul Turkey
- Environmental Engineering Department, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Louise Meunier
- Department of Chemical Engineering, Queen's University, Kingston K7L 3N6, Ontario, Canada
| | - Mohammad Mehrabi
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran
| | - Ehssan H Koupaie
- Department of Chemical Engineering, Queen's University, Kingston K7L 3N6, Ontario, Canada
| |
Collapse
|
7
|
Radu ER, Voicu SI, Thakur VK. Polymeric Membranes for Biomedical Applications. Polymers (Basel) 2023; 15:polym15030619. [PMID: 36771921 PMCID: PMC9919920 DOI: 10.3390/polym15030619] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
Polymeric membranes are selective materials used in a wide range of applications that require separation processes, from water filtration and purification to industrial separations. Because of these materials' remarkable properties, namely, selectivity, membranes are also used in a wide range of biomedical applications that require separations. Considering the fact that most organs (apart from the heart and brain) have separation processes associated with the physiological function (kidneys, lungs, intestines, stomach, etc.), technological solutions have been developed to replace the function of these organs with the help of polymer membranes. This review presents the main biomedical applications of polymer membranes, such as hemodialysis (for chronic kidney disease), membrane-based artificial oxygenators (for artificial lung), artificial liver, artificial pancreas, and membranes for osseointegration and drug delivery systems based on membranes.
Collapse
Affiliation(s)
- Elena Ruxandra Radu
- Department of Analytical Chemistry and Environmental Engineering, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Advanced Polymers Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Stefan Ioan Voicu
- Department of Analytical Chemistry and Environmental Engineering, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Advanced Polymers Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Correspondence: (S.I.V.); (V.K.T.)
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
- Centre for Research & Development, Chandigarh University, Mohali 140413, Punjab, India
- Correspondence: (S.I.V.); (V.K.T.)
| |
Collapse
|
8
|
A high-protein retained PES hemodialysis membrane with tannic acid as a multifunctional modifier. Colloids Surf B Biointerfaces 2022; 220:112921. [DOI: 10.1016/j.colsurfb.2022.112921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 11/27/2022]
|
9
|
Vila Bauer D, Debastiani R, Telles de Souza C, Amaral L, Ferraz Dias J. The potentialities of ultrasound as an alternative to chemical etching for proton beam writing micropatterning. J Appl Polym Sci 2022. [DOI: 10.1002/app.52407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Deiverti Vila Bauer
- Ion Implantation Laboratory, Institute of Physics Federal University of Rio Grande do Sul Porto Alegre Rio Grande do Sul Brazil
- Graduate Program on Materials Science Federal University of Rio Grande do Sul Porto Alegre Rio Grande do Sul Brazil
| | - Rafaela Debastiani
- Institute of Nanotechnology, Karlsruhe Institute of Technology Hermann‐von‐Helmholtz‐Platz 1 Eggenstein‐Leopoldshafen Germany
- 3DMM2O‐Cluster of Excellence (EXC‐2082/1‐390761711) Karlsruhe Institute of Technology (KIT) Karlsruhe Germany
| | - Claudia Telles de Souza
- Ion Implantation Laboratory, Institute of Physics Federal University of Rio Grande do Sul Porto Alegre Rio Grande do Sul Brazil
- Graduate Program on Materials Science Federal University of Rio Grande do Sul Porto Alegre Rio Grande do Sul Brazil
| | - Livio Amaral
- Ion Implantation Laboratory, Institute of Physics Federal University of Rio Grande do Sul Porto Alegre Rio Grande do Sul Brazil
- Graduate Program on Materials Science Federal University of Rio Grande do Sul Porto Alegre Rio Grande do Sul Brazil
| | - Johnny Ferraz Dias
- Ion Implantation Laboratory, Institute of Physics Federal University of Rio Grande do Sul Porto Alegre Rio Grande do Sul Brazil
- Graduate Program on Materials Science Federal University of Rio Grande do Sul Porto Alegre Rio Grande do Sul Brazil
| |
Collapse
|