1
|
Zhang C, Yang K, Yuan Y, Cao X, Wang H, Sakamaki T, Li X. Material modification of electrodes in microbial electrochemical system to enhance electrons utilization on the electrode and its impact on microorganisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134908. [PMID: 38889459 DOI: 10.1016/j.jhazmat.2024.134908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/12/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
Previous research has established a MES embedding a microbial electrode to facilitate the degradation of antibiotics in water. We modified microbial electrodes in the MES with PEDOT and rGO to enhance electron utilization on electrodes and to further promote antibiotic degradation. Density functional theory calculations on the SMX molecule indicated that the C4-S8 and S8-N27 bonds are the most susceptible to electron attack. The introduction of various functional groups and multivalent elements enhanced the electrodes' capacitance and electron mediation capabilities. This led to enhance both electron utilization on the electrodes and the removal efficiency of SMX. After 120 h, the degradation efficiency of SMX by PEDOT and rGO-modified electrodes increased by 45.47 % and 25.19 %, respectively, compared to unmodified electrodes. The relative abundance of sulfate-reducing and denitrifying bacteria significantly increased in PEDOT and rGO-modified electrodes, while the abundance of nitrifying bacteria and potential antibiotic resistance gene host microbes significantly decreased. The impact of PEDOT modification positively influenced microbial Cellular Processes, including cell growth, death, and motility. This study provides insights into the mechanisms of direct electron involvement in antibiotic degradation steps in microbial electrochemistry, and provides a possible path for improved strategies in antibiotic degradation and sustainable environmental remediation.
Collapse
Affiliation(s)
- Chong Zhang
- School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Ke Yang
- School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Yali Yuan
- School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Xian Cao
- School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Hui Wang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Department of Municipal and Environmental Engineering, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Takashi Sakamaki
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba Aramaki 6-6-06, Sendai 980-8579, Japan
| | - Xianning Li
- School of Energy and Environment, Southeast University, Nanjing 210096, China.
| |
Collapse
|
2
|
Mu R, Liu X, Li Y, Chen F, Shi Y, Wang J, Shen X, Xu L, Du Y, Yang Z. Distinct electrochemical and metabolic responses of anode respiring bacteria to sulfamethoxazole in microbial fuel cells coupled with constructed wetlands. BIORESOURCE TECHNOLOGY 2024; 406:131079. [PMID: 38972431 DOI: 10.1016/j.biortech.2024.131079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/18/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
The influence of sulfamethoxazole (SMX) on the electrochemical activity, bacterial community, and metabolic state of anode respiring microbes was investigated in constructed-wetland-coupled microbial fuel cells (CW-MFCs). Results suggested that SMX shortened the acclimatisation period and enhanced the maximal power density of the CW-MFC at 0.1 mg/L. Cyclic voltammetry (CV) results indicated that SMX may trigger an electrocatalytic process related to an extra redox-active compound. Exposure to SMX significantly altered the bacterial communities, leading to decreased abundances of Desulfurivibrio and Pseudomonas, while increasing the contents of Rhodobacter and Anaerovorax. Furthermore, metabolites related to amino acids and nucleotide metabolism were suppressed at 10 mg/L SMX, while the related metabolites increased at 0.1 mg/L SMX. The upregulated pathway of biofilm formation indicated that the bacteria tended to form biofilms under the influence of SMX. This study provides valuable insights into the complex interactions between SMX and electrochemically active bacteria.
Collapse
Affiliation(s)
- Ruimin Mu
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan 250101, China; School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Xiuhan Liu
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan 250101, China; School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Yunfei Li
- School of Bioengineering, Shandong Polytechnic, Jinan 250104, China
| | - Feiyong Chen
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan 250101, China; Huzhou Nanxun Jianda Ecological Environment Innovation Center, Shandong Jianzhu University, Jinan 250101, China
| | - Yalan Shi
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan 250101, China
| | - Jin Wang
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan 250101, China
| | - Xue Shen
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan 250101, China
| | - Linxu Xu
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan 250101, China
| | - Yufeng Du
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan 250101, China
| | - Zhigang Yang
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan 250101, China; Huzhou Nanxun Jianda Ecological Environment Innovation Center, Shandong Jianzhu University, Jinan 250101, China.
| |
Collapse
|
3
|
Zhao K, Liu S, Feng Y, Li F. Bioelectrochemical remediation of soil antibiotic and antibiotic resistance gene pollution: Key factors and solution strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174517. [PMID: 38977104 DOI: 10.1016/j.scitotenv.2024.174517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/12/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024]
Abstract
In recent years, owing to the overuse and improper handling of antibiotics, soil antibiotic pollution has become increasingly serious and an environmental issue of global concern. It affects the quality and ecological balance of the soil and allows the spread of antibiotic resistance genes (ARGs), which threatens the health of all people. As a promising soil remediation technology, bioelectrochemical systems (BES) are superior to traditional technologies because of their simple operation, self-sustaining operation, easy control characteristics, and use of the metabolic processes of microorganisms and electrochemical redox reactions. Moreover, they effectively remediate antibiotic contaminants in soil. This review explores the application of BES remediation mechanisms in the treatment of antibiotic contamination in soil in detail. The advantages of BES restoration are highlighted, including the effective removal of antibiotics from the soil and the prevention of the spread of ARGs. Additionally, the critical roles played by microbial communities in the remediation process and the primary parameters influencing the remediation effect of BES were clarified. This study explores several strategies to improve the BES repair efficiency, such as adjusting the reactor structure, improving the electrode materials, applying additives, and using coupling systems. Finally, this review discusses the current limitations and future development prospects, and how to improve its performance and promote its practical applications. In summary, this study aimed to provide a reference for better strategies for BES to effectively remediate soil antibiotic contamination.
Collapse
Affiliation(s)
- Ke Zhao
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun 130118, People's Republic of China
| | - Shenghe Liu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun 130118, People's Republic of China; Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yimeng Feng
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fengxiang Li
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
4
|
Hu Z, Zhao H, Wang B, Zhang C, Lu H. Study on the performance of biochar prepared from walnut shell and traditional graphene electrode plate in the treatment of domestic sewage in microbial fuel cells. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:2880-2893. [PMID: 38877619 DOI: 10.2166/wst.2024.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/28/2024] [Indexed: 06/16/2024]
Abstract
As a new pollutant treatment technology, microbial fuel cell (MFC) has a broad prospect. In this article, the devices assembled using walnut shells are named biochar-microbial fuel cell (B-MFC), and the devices assembled using graphene are named graphene-microbial fuel cell (G-MFC). Under the condition of an external resistance of 1,000 Ω, the B-MFC with biochar as the electrode plate can generate a voltage of up to 75.26 mV. The maximum power density is 76.61 mW/m2, and the total internal resistance is 3,117.09 Ω. The removal efficiency of B-MFC for ammonia nitrogen (NH3-N), chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) was higher than that of G-MFC. The results of microbial analysis showed that there was more operational taxonomic unit (OTU) on the walnut shell biochar electrode plate. The final analysis of the two electrode materials using BET specific surface area testing method (BET) and scanning electron microscope (SEM) showed that the pore size of walnut shell biochar was smaller, the specific surface area was larger, and the pore distribution was smoother. The results show that using walnut shells to make electrode plates is an optional waste recycling method and an electrode plate with excellent development prospects.
Collapse
Affiliation(s)
- Zhenhua Hu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Huifang Zhao
- College of Economics and Management, Shandong University of Science and Technology, Qingdao 266590, China
| | - Bingyuan Wang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Cuijing Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Hongsheng Lu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China E-mail:
| |
Collapse
|
5
|
Li Y, Zhang G, Liang D, Wang X, Guo H. Tetracycline hydrochloride degradation in polarity inverted microbial fuel cells: Performance, mechanisms and microbiology. CHEMOSPHERE 2024; 349:140902. [PMID: 38096993 DOI: 10.1016/j.chemosphere.2023.140902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/08/2023] [Accepted: 12/03/2023] [Indexed: 12/19/2023]
Abstract
Tetracycline antibiotics are widely used in veterinary medicine, human therapy and agriculture, and their presence in natural water raises environmental concerns. In this study, more than 94% of tetracycline hydrochloride (TCH) could be rapidly degraded within 48 h in polarity-inverted microbial fuel cells. The electrochemically active bacteria had the best electrochemical performance at 1 mg/L of TCH with the minimum internal resistance of 77.38 Ω. The electron-rich functional groups of TCH were continuously attacked and finally degradated into small molecules in three possible degradation pathways. Microbial community structure analysis showed that Comamonas and Shinella were enriched at the electrode as polarity-inverted bacteria. Genomic analysis showed that both direct and indirect electron transfer participated in the degradation of TCH in polarity-inverted microbial fuel cell (MFC) and the functional genes related to electrical conductivity in polarity-inverted MFC were more enriched on the electrode surface than non-polarity-inverted MFC. This study can facilitate further investigations about the biodegradation of TCH in polarity-inverted microbial fuel cell.
Collapse
Affiliation(s)
- Yongkang Li
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, China; Insititute of Underground Engineering, Zhengzhou University, Zhengzhou, China
| | - Guangyi Zhang
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, China; Insititute of Underground Engineering, Zhengzhou University, Zhengzhou, China.
| | - Danxin Liang
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, China; Insititute of Underground Engineering, Zhengzhou University, Zhengzhou, China
| | - Xiaoqin Wang
- College of Chemistry, ZhengZhou University, Zhengzhou, China
| | - Haifeng Guo
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, China; Insititute of Underground Engineering, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Wang K, Yang S, Yu X, Liu Y, Bai M, Xu Y, Weng L, Li Y, Li X. Effect of microplastics on the degradation of tetracycline in a soil microbial electric field. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132313. [PMID: 37619277 DOI: 10.1016/j.jhazmat.2023.132313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/05/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
The degradation of organic pollutants and the adsorption of organic pollutants onto microplastics (MPs) in the environment have recently been intensively studied, but the effects of biocurrents, which are widespread in various soil environments, on the environmental behavior of MPs and antibiotic pollutants have not been reported. In this study, it was found that polylactic acid (PLA) and polyvinyl chloride (PVC) MPs accelerated the mineralization of humic substances in microbial electrochemical systems (MESs). After tetracycline (TC) was introduced into the MESs, the internal resistance of the soil MESs decreased. Additionally, the presence of MPs enhanced the charge output of the soil MESs by 40% (PLA+TC) and 18% (PVC+TC) compared with a control group without MPs (424 C). The loss in MP mass decreased after TC was added, suggesting a promotion of TC degradation rather than MP degradation for charge output. MPs altered the distribution of the highest occupied molecular orbitals and lowest unoccupied molecular orbitals of TC molecules and reduced the energy barrier for the TC hydrolysis reaction. The microbial community of the plastisphere exhibited a greater ability to degrade xenobiotics than the soil microbial community, indicating that MPs were hotspots for TC degradation. This study provides the first glimpse into the influence of MPs on the degradation of TC in MESs, laying a theoretical and methodological foundation for the systematic evaluation of the potential risks of environmental pollutants in the future.
Collapse
Affiliation(s)
- Kai Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Side Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Xin Yu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Yonghong Liu
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Mohan Bai
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Yan Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Liping Weng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China; Department of Soil Quality, Wageningen University, Wageningen 6700 HB, the Netherlands
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China.
| |
Collapse
|
7
|
Zhou X, Zhang X, Peng Y, Douka AI, You F, Yao J, Jiang X, Hu R, Yang H. Electroactive Microorganisms in Advanced Energy Technologies. Molecules 2023; 28:molecules28114372. [PMID: 37298848 DOI: 10.3390/molecules28114372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Large-scale production of green and pollution-free materials is crucial for deploying sustainable clean energy. Currently, the fabrication of traditional energy materials involves complex technological conditions and high costs, which significantly limits their broad application in the industry. Microorganisms involved in energy production have the advantages of inexpensive production and safe process and can minimize the problem of chemical reagents in environmental pollution. This paper reviews the mechanisms of electron transport, redox, metabolism, structure, and composition of electroactive microorganisms in synthesizing energy materials. It then discusses and summarizes the applications of microbial energy materials in electrocatalytic systems, sensors, and power generation devices. Lastly, the research progress and existing challenges for electroactive microorganisms in the energy and environment sectors described herein provide a theoretical basis for exploring the future application of electroactive microorganisms in energy materials.
Collapse
Affiliation(s)
- Xingchen Zhou
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan 430205, China
| | - Xianzheng Zhang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan 430205, China
| | - Yujie Peng
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan 430205, China
| | - Abdoulkader Ibro Douka
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Feng You
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan 430205, China
| | - Junlong Yao
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan 430205, China
| | - Xueliang Jiang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan 430205, China
| | - Ruofei Hu
- Department of Food Science and Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Huan Yang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan 430205, China
| |
Collapse
|
8
|
Tahir K, Ali AS, Ghani AA, Hussain M, Kim B, Lim Y, Lee DS. Enhanced bio-electrochemical performance of microbially catalysed anode and cathode in a microbial electrosynthesis system. CHEMOSPHERE 2023; 317:137770. [PMID: 36621685 DOI: 10.1016/j.chemosphere.2023.137770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/09/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Most bio-electrochemical systems (BESs) use biotic/abiotic electrode combinations, with platinum-based abiotic electrodes being the most common. However, the non-renewability, cost, and poisonous nature of such electrode systems based on noble metals are major bottlenecks in BES commercialisation. Microbial electrosynthesis (MES), which is a sustainable energy platform that simultaneously treats wastewater and produces chemical commodities, also faces the same problem. In this study, a dual bio-catalysed MES system with a biotic anode and cathode (MES-D) was tested and compared with a biotic cathode/abiotic anode system (MES-S). Different bio-electrochemical tests revealed improved BES performance in MES-D, with a 3.9-fold improvement in current density compared to that of MES-S. Volatile fatty acid (VFA) generation also increased 3.2-, 4.1-, and 1.8-fold in MES-D compared with that in MES-S for acetate, propionate, and butyrate, respectively. The improved performance of MES-D could be attributed to the microbial metabolism at the bioanode, which generated additional electrons, as well as accumulative VFA production by both the bioanode and biocathode chambers. Microbial community analysis revealed the enrichment of electroactive bacteria such as Proteobacteria (60%), Bacteroidetes (67%), and Firmicutes + Proteobacteria + Bacteroidetes (75%) on the MES-S cathode and MES-D cathode and anode, respectively. These results signify the potential of combined bioanode/biocathode BESs such as MES for application in improving energy and chemical commodity production.
Collapse
Affiliation(s)
- Khurram Tahir
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Abdul Samee Ali
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Ahsan Abdul Ghani
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Muzammil Hussain
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Bolam Kim
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Youngsu Lim
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Dae Sung Lee
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| |
Collapse
|
9
|
Zhang W, Li Z, Luo R, Guo Q, Xu F, Yang F, Zhang M, Jia L, Yuan S. Design of tandem CuO/CNTs composites for enhanced tetracycline degradation and antibacterial activity. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Qiu Y, Zhang Z, Li Z, Li J, Feng Y, Liu G. Enhanced performance and microbial interactions of shallow wetland bed coupling with functional biocathode microbial electrochemical system (MES). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156383. [PMID: 35654178 DOI: 10.1016/j.scitotenv.2022.156383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
It is essential to remediate the polluted urban river, which endangers the aquatic creatures and affected human body's senses. The treatment wetland combined with microbial electrochemical system (MES) used for the remediation is becoming a new research focus due to its ideal pollutants removal efficiency and small footprint. Here this paper provided a kind of novel shallow wetland bed coupling with close-circuit microbial electrochemical system (WB-CMES) to remove pollutants in surface water. In contrast to the shallow wetland bed coupling with open-circuit MES (WB-OMES) and the shallow wetland bed without MES (WB), the enhancing effects and pollutants removal pathway were evaluated. After 62-day operation, average TN removal efficiency in WB-CMES was 87.7%, which was 19.7% and 13.8% higher than that of WB-OMES and WB respectively. The rate coefficient k of NO3--N degradation in WB-CMES was 1.6 and 1.8 times higher than that in WB-OMES and WB. The results of chlorophyll, protein and superoxide dismutase (SOD) in WB-CMES were 27.3%, 44.3% and 12.9% higher than those in WB. The microbial community structure analysis indicated that electroactive bacteria on anode like Desulfobulbus could oxidize organics and generate electrons to compensate cathode, meanwhile, cathode could enrich more species of functional bacteria like Rhodobacter, Pirellula, Hyphomicrobium, Thauera, which had a synergistic effect on oxygen reduction, nitrogen removal and plant growth. The results indicated that oxygen produced by submerged plants could be utilized by the oxygen-reducing functional biocathode of MES and the proper aerobic and anoxic environment might enhance nitrate removal mainly through simultaneous nitrification and denitrification (SND), aerobic denitrification and anammox. This research provided a novel technology with advantages of simple operation, flexible configuration, easy scale-up and low cost for application in remediation of highly polluted surface water.
Collapse
Affiliation(s)
- Ye Qiu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhaohan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zeng Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jiannan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guohong Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
11
|
Shang C, Li Y, Zhang J, Gan S. Analysis of Bacterial Diversity in Different Types of Daqu and Fermented Grains From Danquan Distillery. Front Microbiol 2022; 13:883122. [PMID: 35865918 PMCID: PMC9295720 DOI: 10.3389/fmicb.2022.883122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Bacterial communities in high-temperature Daqu and fermented grains are important for brewing Jiang-flavor Baijiu such as Danquan Baijiu. Daqu is a saccharifying and fermenting agent, which has a significant impact on the flavor of Baijiu. However, bacterial communities in three different types of samples from the Danquan distillery (dqjq_ck, dqjqcp, and dqjp3) were still unclear, which limited further development of Danquan Baijiu. “dqjq_ck” and “dqjqcp” indicate high-temperature Daqu at days 45 and 135, respectively. “dqjp3” indicates fermented grains. In this study, the bacterial communities of three samples were analyzed by Illumina Miseq high-throughput sequencing. The bacterial communities of three samples primarily composed of thermophilic bacteria and bacteria with stress resistance. The most abundant species in dqjq_ck, dqjqcp, and dqjp3 were Comamonas, Bacillus, and unclassified Lactobacillales, respectively. The main bacteria included Bacillus, Comamonas, Myroides, Paenibacillus, Acetobacter, Kroppenstedtia, Staphylococcus, Saccharopolyspora, Planifilum, Lactobacillus, Acinetobacter, Oceanobacillus, Enterococcus, Thermoactinomyces, Lactococcus, Streptomyces, Saccharomonospora, Tepidimicrobium, Anaerosalibacter, unclassified_Lactobacillales, unclassified_Thermoactinomycetaceae_1, unclassified_Bacillaceae_2, unclassified_Bacillales, unclassified_Microbacteriaceae, unclassified_Rhodobacteraceae, unclassified_Actinopolysporineae, and unclassified_Flavobacteriaceae in three samples (percentage was more than 1% in one of three samples). In our study, the succession of microbiota in three samples representing three important stages of Danquan Baijiu brewing was revealed. This article lays a good foundation for understanding the fermentation mechanism and screening some excellent indigenous bacteria to improve the quality of Danquan Baijiu in future.
Collapse
Affiliation(s)
- Changhua Shang
- College of Life Sciences, Guangxi Normal University, Guilin, China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin (Guangxi Normal University), Guilin, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Changhua Shang
| | - Yujia Li
- College of Life Sciences, Guangxi Normal University, Guilin, China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
| | - Jin Zhang
- College of Life Sciences, Guangxi Normal University, Guilin, China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
| | - Shanling Gan
- College of Life Sciences, Guangxi Normal University, Guilin, China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
| |
Collapse
|