1
|
Hu J, Wang P, Li J, Zhang Q, Tian L, Liu T, Ma W, Zheng H. Hazard profiles, distribution trends, and sources tracing of rare earth elements in dust of kindergartens in Beijing. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124374. [PMID: 38906400 DOI: 10.1016/j.envpol.2024.124374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/30/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
Children, the most vulnerable group in urban populations, are susceptible to the effects of pollution in urban environments. It is significant to evaluate the influence of rare earth elements (REEs) from kindergartens dust (KD) in Beijing on children's health. This study collected surface dust from 73 kindergartens in 16 districts of the mega-city of Beijing, and the concentrations of 14 REEs in KD, including La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, were detected. The contamination levels, source apportionment, and health exposure risk of REEs were comprehensively investigated. The results indicate that the contamination levels of 14 REEs are within the acceptable range. Nevertheless, Eu, Ce, La, Pr, Nd, Gd, and Sm show high enrichment due to anthropogenic influence. Besides, KD is rich in light rare earth elements (LREEs) (90.97 mg kg-1) compared to heavy rare earth elements (HREEs) (8.65 mg kg-1). The distribution parameter patterns of REEs suggest that complicated anthropogenic sources influence the enrichment of REEs in KD. The main sources of REEs in KD include natural sources (40.64%), mixed high-tech industries and construction (33.89%), and mixed coal-fired, historical industrial, and transportation sources (26.47%). The primary pathway for daily intake of REEs in children is through ingestion, which presents a low but not negligible health risk. This study provides guidance for the effective risk management of REEs in KD.
Collapse
Affiliation(s)
- Jian Hu
- The State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Peng Wang
- The State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing, 100083, PR China; Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Jun Li
- The State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Qian Zhang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Liyan Tian
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Tingyi Liu
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin, 300387, PR China
| | - Wenmin Ma
- The State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing, 100083, PR China; Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Houyi Zheng
- China National Administration of Coal Geology, Beijing, 100038, PR China
| |
Collapse
|
2
|
Abderrahmani K, Dahdouh M, Boudjema K, Guenachi B, Montevecchi G. Assessment of toxic trace elements (Cd, Pb, As, and Co) in small, medium, and large individuals of Mytilus galloprovincialis and Perna perna mussel species along the Algerian coast. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:123274-123285. [PMID: 37981609 DOI: 10.1007/s11356-023-31029-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/08/2023] [Indexed: 11/21/2023]
Abstract
This research paper focused on the monitoring of marine sites using mussels, which are highly valuable organisms in assessing environmental health. However, a significant challenge arises when determining the appropriate size of mussels for monitoring purposes. The objective of this study was to examine the levels of Cd, Pb, As, and Co in three different size classes of two mussel species, Mytilus galloprovincialis and Perna perna, collected from three sites along the Algerian coast, each exhibiting varying degrees of pollution.At each of the study sites, a total of thirty individuals from small, medium, and large size classes of mussels were collected during four different time periods. The mussels were then dissected, and the concentrations of Cd, Pb, As, and Co were measured in the entire flesh of the mussels using ICP-MS.Across the various study sites, the concentrations of cadmium, lead, arsenic, and cobalt ranged from 0.06 to 1.32 mg/kg, 0.09 to 12.56 mg/kg, 4.23 to 18.31 mg/kg, and 0.11 to 1.85 mg/kg, respectively. Interestingly, the distribution of these metals in the three different size classes of mussels followed a consistent pattern at all the study sites. Large mussels exhibited higher concentrations, while small and medium-sized mussels displayed lower levels. These findings highlight substantial spatial and temporal variations in metal concentrations within the studied sites.
Collapse
Affiliation(s)
- Khaled Abderrahmani
- Centre National de Recherche et de Développement de La Pêche et d'Aquaculture (CNRDPA), 11, Bd Colonel Amirouche, PO Box 67, 42415, Bou-Ismaïl, Tipaza, Algeria.
| | - Mouloud Dahdouh
- Division Technologies et Développement of SONATRACH, Avenue 1er novembre 1954, Boumerdès 35000, Boumerdès, Algeria
| | - Kamel Boudjema
- Centre National de Recherche et de Développement de La Pêche et d'Aquaculture (CNRDPA), 11, Bd Colonel Amirouche, PO Box 67, 42415, Bou-Ismaïl, Tipaza, Algeria
| | - Belkacem Guenachi
- Centre National de Recherche et de Développement de La Pêche et d'Aquaculture (CNRDPA), 11, Bd Colonel Amirouche, PO Box 67, 42415, Bou-Ismaïl, Tipaza, Algeria
| | - Giuseppe Montevecchi
- Department of Life Sciences (Agri-Food Science Area), BIOGEST - SITEIA Interdepartmental Centre, University of Modena and Reggio Emilia Piazzale Europa 1A, 42124, Reggio Emilia, Italy
| |
Collapse
|
3
|
Mititelu M, Udeanu DI, Docea AO, Tsatsakis A, Calina D, Arsene AL, Nedelescu M, Neacsu SM, Bruno Ștefan Velescu, Ghica M. New method for risk assessment in environmental health: The paradigm of heavy metals in honey. ENVIRONMENTAL RESEARCH 2023; 236:115194. [PMID: 36587723 DOI: 10.1016/j.envres.2022.115194] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
The release of heavy metals into the natural environment creates problems due to their persistence. They can accumulate in the food chain presenting a dangerous sign for ecosystems and human health. The metals in honey could be of agrochemical or industrial origin. Regular consumption of honey and bee products contaminated with various pollutants in high concentrations can cause serious health problems due accumulation of toxic substances in the body. In the current study, we aimed to determine the concentrations of chromium, cadmium, zinc, copper, lead and nickel in four types of honey (linden, acacia, rapeseed and polyfloral honey) and soil collected from three regions with different degrees of pollution. For the risk characterization, we used a new methodology that calculated the corrected estimated daily intake and the source hazard quotient for each metal and the adversity-specific hazard index. There was a strong influence of the degree of environmental pollution on the level of contaminants in the honey samples. In the case of a single chemical assessment, an HQ above 10 was obtained for Cd in linden, rapeseed and polyfloral honey from area 1 and an HQ above 1 was obtained for Cd in the other honey samples from the 3 areas, for Cu in all honey samples from all the 3 areas, for Pb in linden, rapeseed and polyfloral honey from area 1 and for Cr in linden honey for area 2. HIA calculated as a sum of all HQS of heavy metals in food reveals an increase and moderate risk for nephrotoxicity, bone demineralisation, cardiotoxicity, developmental toxicity, small decrease in body weight or body weight gain after consumption of honey impurified with heavy metals. A strict monitorization of heavy metals in honey samples from farmers should be done in order to protect the consumers.
Collapse
Affiliation(s)
- Magdalena Mititelu
- Department of Clinical Laboratory and Food Hygiene Department, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.
| | - Denisa Ioana Udeanu
- Department of Clinical Laboratory and Food Hygiene Department, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.
| | - Anca Oana Docea
- Department of Toxicology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania.
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003, Heraklion, Greece.
| | - Daniela Calina
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania.
| | - Andreea Letitia Arsene
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania.
| | - Mirela Nedelescu
- Department of Hygiene and Environmental Health, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 020956, Bucharest, Romania; Department of Food Hygiene and Nutrition, National Institute of Public Health, National Centre for Envi-ronmental Hazards Monitoring, 1-3 Dr. Leonte Street, 020956, Bucharest, Romania.
| | | | - Bruno Ștefan Velescu
- Department of Pharmacology, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Bu-charest, Romania.
| | - Manuela Ghica
- Department of Mathematics and Biostatistics, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.
| |
Collapse
|
4
|
Zhang J, Gu H, Chen S, Ai W, Dang Y, Ai S, Li Z. Assessment of heavy metal pollution and preschool children health risk in urban street dusts from different functional areas in a typical industrial and mining city, NW China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7199-7214. [PMID: 37258900 DOI: 10.1007/s10653-023-01623-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/16/2023] [Indexed: 06/02/2023]
Abstract
To assess the pollution characteristics and health risks associated with street dust exposure among preschool children in typical industrial and mining areas, we analyzed heavy metal concentrations of 20 urban street dusts in commercial area (CA), residential area (RA), scientific and educational area (SEA) and industrial and mining area (IMA) from Baiyin, NW China. The average concentrations of Cr, Mn, Ni, Cu, Zn, Cd, Pb, As and Hg were 614.96, 484.25, 1757.74, 6868.86, 893.19, 77.62, 1473.99, 15.01 and 0.59 mg·kg-1, respectively. The ecological risk indexes for Cd, Cu and Hg were found as 20,075.20, 1425.07 and 1174.86, respectively, and the ecological risk was extremely high. The pollution load indexes (PLI) were > 1 for all four functional areas. The total hazard index (THI) for different functional areas were more than 1, and the main exposure pathway for children was ingestion route. Heavy metals in street dust of the IMA had the highest THI for children (43.88), and HI of Pb was being most significant (17.38). In addition, the carcinogenic risk to children via the respiratory route was acceptable. Furthermore, factor analysis and cluster analysis classified heavy metals into two groups, indicating common anthropogenic sources for Cr, Ni, Cu, Zn, Cd, Pb, As and Hg. In conclusion, urban street dusts from industrial and mining area of Baiyin, NW China were found polluted by heavy metals and the pollution would pose an obvious non-carcinogenic risk to preschool children.
Collapse
Affiliation(s)
- Jinglei Zhang
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Huilin Gu
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Shun Chen
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Weichang Ai
- Henan Wildlife Protection Center, Zhengzhou, 450044, China
| | - Yuhui Dang
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Shiwei Ai
- School of Public Health, Lanzhou University, Lanzhou, 730000, China.
| | - Zhilan Li
- School of Public Health, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
5
|
Hlihor RM, Roșca M, Hagiu-Zaleschi L, Simion IM, Daraban GM, Stoleru V. Medicinal Plant Growth in Heavy Metals Contaminated Soils: Responses to Metal Stress and Induced Risks to Human Health. TOXICS 2022; 10:toxics10090499. [PMID: 36136464 PMCID: PMC9504071 DOI: 10.3390/toxics10090499] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 05/31/2023]
Abstract
Accelerating heavy metal pollution is a hot issue due to a continuous growth in consumerism and increased activities in various global industries. Soil contamination with heavy metals has resulted in their incorporation into the human food web via plant components. Accumulation and amplification of heavy metals in human tissues through the consumption of medicinal plants can have hazardous health outcomes. Therefore, in this critical review we aim to bring together published information on this subject, with a special highlight on the knowledge gaps related to heavy metal stress in medicinal plants, their responses, and human health related risks. In this respect, this review outlines the key contamination sources of heavy metals in plants, as well as the absorption, mobilization and translocation of metal ions in plant compartments, while considering their respective mechanisms of detoxification. In addition, this literature review attempts to highlight how stress and defensive strategies operate in plants, pointing out the main stressors, either biotic or abiotic (e.g., heavy metals), and the role of reactive oxygen species (ROS) in stress answers. Finally, in our research, we further aim to capture the risks caused by heavy metals in medicinal plants to human health through the assessment of both a hazard quotient (HQ) and hazard index (HI).
Collapse
Affiliation(s)
- Raluca Maria Hlihor
- Department of Horticultural Technologies, Faculty of Horticulture, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania
| | - Mihaela Roșca
- Department of Horticultural Technologies, Faculty of Horticulture, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania
| | - Laura Hagiu-Zaleschi
- Department of Horticultural Technologies, Faculty of Horticulture, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania
| | - Isabela Maria Simion
- Department of Horticultural Technologies, Faculty of Horticulture, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania
| | - Gabriel Mihăiță Daraban
- Department of Organic, Biochemical and Food Engineering, “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73 Prof. D. Mangeron Blvd., 700050 Iasi, Romania
| | - Vasile Stoleru
- Department of Horticultural Technologies, Faculty of Horticulture, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania
| |
Collapse
|
6
|
Mititelu M, Neacșu SM, Oprea E, Dumitrescu DE, Nedelescu M, Drăgănescu D, Nicolescu TO, Roșca AC, Ghica M. Black Sea Mussels Qualitative and Quantitative Chemical Analysis: Nutritional Benefits and Possible Risks through Consumption. Nutrients 2022; 14:nu14050964. [PMID: 35267939 PMCID: PMC8912374 DOI: 10.3390/nu14050964] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
Mussels have a particular nutritional value, representing a highly valued food source and thus sought after worldwide. Their meat is a real culinary delicacy, rich in proteins, lipids, carbohydrates, trace elements, enzymes, and vitamins. The seasonal variation of mussels’ biochemical composition has been studied to determine the best harvesting period to capitalize on various biologically active fractions. In this work biochemical determinations have been performed on fresh flesh samples of Mytilus galloprovincialis specimens from the Black Sea coast to study seasonal variations in mussels’ biochemical compounds. An analysis of significant lipid classes and the fatty acid composition of lipid extracts obtained from mussel flesh has also been performed. Since mussels retain pollutants from the marine environment, in parallel, the concentration of heavy metals in the meat of mussels collected for the analysis of the chemical composition was investigated. The impact and risk of heavy metal poisoning due to food consumption of mussels contaminated due to pollution of the marine harvesting area was evaluated by the bio-concentration factor of metals and estimated daily intakes of heavy metals through mussel consumption.
Collapse
Affiliation(s)
- Magdalena Mititelu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, University of Medicine and Pharmacy Carol Davila, 020956 Bucharest, Romania;
| | | | - Eliza Oprea
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 030018 Bucharest, Romania
- Microbiology Department, Faculty of Biology, University of Bucharest, 1-3 Portocalilor Way, 060101 Bucharest, Romania
- Correspondence: (E.O.); (D.-E.D.); (A.C.R.)
| | - Denisa-Elena Dumitrescu
- Department of Organic Chemistry, Faculty of Pharmacy, “Ovidius” University of Constanta, 6, Căpitan Aviator Al Șerbănescu Street, 900470 Constanta, Romania
- Correspondence: (E.O.); (D.-E.D.); (A.C.R.)
| | - Mirela Nedelescu
- Department of Hygiene and Environmental Health, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 020956 Bucharest, Romania;
- Department of Food Hygiene and Nutrition, National Institute of Public Health, National Centre for Environmental Hazards Monitoring, 1-3 Dr. Leonte Street, 020956 Bucharest, Romania
| | - Doina Drăgănescu
- Department of Pharmaceutical Physics and Informatics, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania;
| | - Teodor Octavian Nicolescu
- Department of Organic Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy Carol Davila, 020956 Bucharest, Romania;
| | - Adrian Cosmin Roșca
- Department of Drug Analysis, Biopharmacy and Biological Medicines, Faculty of Pharmacy, “Ovidius” University of Constanta, 6, Căpitan Aviator Al Șerbănescu Street, 900470 Constanta, Romania
- Correspondence: (E.O.); (D.-E.D.); (A.C.R.)
| | - Manuela Ghica
- Department of Biostatistics, Faculty of Pharmacy, University of Medicine and Pharmacy Carol Davila, 020956 Bucharest, Romania;
| |
Collapse
|