1
|
Kong M, Huang MJ, Zhang ZX, Long J, Siddique KHM, Zhang DM. Effects of plastic film mulching on soil microbial carbon metabolic activity and functional diversity at different maize growth stages in cool, semi-arid regions. Front Microbiol 2024; 15:1492149. [PMID: 39529670 PMCID: PMC11550987 DOI: 10.3389/fmicb.2024.1492149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Plastic film mulching has been widely used to enhance soil hydrothermal conditions and increase crop yields in cool, semi-arid areas. However, its impact on soil microbial carbon metabolic activity and functional diversity during plant growth remains unclear despite their important roles in nutrient cycling and soil quality evaluation. Methods This study used the Biolog EcoPlate technique to investigate the dynamics and driving factors of soil microbial carbon metabolic activity and functional diversity at different maize growth stages following plastic film mulching. Results and discussion The results revealed that film mulching significantly increased microbial carbon metabolic activities [represented by average well color development (AWCD)] by 300% at the seedling stage and by 26.8% at maturity but decreased it by 47.4% at the flowering stage compared to the control (without mulching). A similar trend was observed for the microbial functional diversity index. Redundancy analysis identified soil moisture (SM), soil temperature (ST), dissolved organic carbon (DOC), microbial biomass carbon (MBC), and bacteria amounts as the primary factors influencing changes in soil microbial carbon source utilization. The mulch treatment significantly increased SM at all growth stages, while its warming effect disappeared at the flowering stage. Soil DOC, MBC, and bacterial populations were notably higher under mulching at the seedling and maturity stages but lower at the flowering stage. Pearson correlation analysis showed that changes in SM, ST, DOC, MBC, and bacterial populations positively correlated with the utilization of all carbon source classes, AWCD, and functional diversity indexes after film mulching. Furthermore, maize grain yield and water use efficiency increased by 142 and 129%, respectively, following film mulching. In conclusion, plastic film mulching enhanced soil microbial carbon metabolic activity and functional diversity at the seedling and maturity stages, improving crop yields in cool, semi-arid areas. Furthermore, the decrease in soil carbon metabolic capacity at flowering stage highlights that supplementing soil carbon sources should be considered after continuous film mulching to sustain or enhance farmland productivity and soil quality.
Collapse
Affiliation(s)
- Meng Kong
- Shanxi Province Key Laboratory of Sustainable Dryland Agriculture, Shanxi Institute of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan, China
- Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry of Agriculture and Rural Affairs and Shanxi Province), Shanxi Agricultural University, Taiyuan, China
| | - Ming-Jing Huang
- Shanxi Province Key Laboratory of Sustainable Dryland Agriculture, Shanxi Institute of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan, China
- Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry of Agriculture and Rural Affairs and Shanxi Province), Shanxi Agricultural University, Taiyuan, China
| | - Zhi-Xian Zhang
- Shanxi Province Key Laboratory of Sustainable Dryland Agriculture, Shanxi Institute of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan, China
- Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry of Agriculture and Rural Affairs and Shanxi Province), Shanxi Agricultural University, Taiyuan, China
| | - Jiang Long
- Shanxi Province Key Laboratory of Sustainable Dryland Agriculture, Shanxi Institute of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan, China
- Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry of Agriculture and Rural Affairs and Shanxi Province), Shanxi Agricultural University, Taiyuan, China
| | | | - Dong-Mei Zhang
- Shanxi Province Key Laboratory of Sustainable Dryland Agriculture, Shanxi Institute of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan, China
- Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry of Agriculture and Rural Affairs and Shanxi Province), Shanxi Agricultural University, Taiyuan, China
| |
Collapse
|
2
|
Zhao S, Zhang A, Zhao Q, Zhang Y, Wang D, Su L, Lin X, Sun Y, Yan L, Wang X, An N, Dong Y, Tan J, Long Y, Lu Z, Li L. Effects of coffee pericarp and litter mulsching on soil microbiomes diversity and functions in a tropical coffee plantation, South China. Front Microbiol 2024; 14:1323902. [PMID: 38260889 PMCID: PMC10800520 DOI: 10.3389/fmicb.2023.1323902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
In recent decades, ecological cyclic cultivation models have attracted increasing attention, primarily because the decomposition of crop residues and litter enhances soil organic matter content, thereby altering the soil microenvironment and regulating the diversity and functions of soil microbial communities. However, the effects of different coffee waste mulching on the diversity of soil microbial communities and their functions are still unclear. Therefore, this study set up four kinds of covering treatments: uncovered coffee waste (C), covered coffee litter (L), covered coffee pericarp (P), and both covered coffee litter and pericarp (PL). The results showed that compared to the control, coffee pericarp mulching significantly increased the soil available potassium (SAK) content by 18.45% and alkali hydrolyzed N (SAN) content by 17.29%. Furthermore, coffee pericarp mulching significantly increased bacterial richness and diversity by 7.75 and 2.79%, respectively, while litter mulching had little effect on bacterial abundance and diversity was smaller. The pericarp mulching significantly increased the abundance of Proteus by 22.35% and the abundance of Chlamydomonas by 80.04%, but significantly decreased the abundance of Cyanobacteria by 68.38%, while the coffee litter mulching significantly increased the abundance of Chlamydomonas by 48.28%, but significantly decreased the abundance of Cyanobacteria by 73.98%. The increase in soil SAK promoted bacterial Anoxygenic_photoautotrophy, Nitrogen_respiration, Nitrate_respiration, Nitrite_respiration, and Denitrification functions. The above results indicate that the increase in available soil potassium and alkali hydrolyzed N content under coffee pericarp cover is the main reason for promoting the diversity and richness of bacterial community and promoting the changes in bacterial community structure and function. The use of coffee pericarps in coffee plantations for ecological recycling helps to improve the diversity of the soil microbial community and maintain the relative stability of the microbial community structure and function, promoting soil health conservation and the sustainable development of related industries.
Collapse
Affiliation(s)
- Shaoguan Zhao
- Spice and Beverage Research Institute of Chinese Academy of Tropical Agricultural Science, Wanning, Hainan, China
| | - Ang Zhang
- Spice and Beverage Research Institute of Chinese Academy of Tropical Agricultural Science, Wanning, Hainan, China
| | - Qingyun Zhao
- Spice and Beverage Research Institute of Chinese Academy of Tropical Agricultural Science, Wanning, Hainan, China
| | - Yaoyu Zhang
- Spice and Beverage Research Institute of Chinese Academy of Tropical Agricultural Science, Wanning, Hainan, China
- College of Tropical Crop Science, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Dong Wang
- School of Life Science, Henan University, Kaifeng, Henan, China
| | - Lanxi Su
- Spice and Beverage Research Institute of Chinese Academy of Tropical Agricultural Science, Wanning, Hainan, China
| | - Xingjun Lin
- Spice and Beverage Research Institute of Chinese Academy of Tropical Agricultural Science, Wanning, Hainan, China
| | - Yan Sun
- Spice and Beverage Research Institute of Chinese Academy of Tropical Agricultural Science, Wanning, Hainan, China
| | - Lin Yan
- Spice and Beverage Research Institute of Chinese Academy of Tropical Agricultural Science, Wanning, Hainan, China
- Yan Lin Expert Workstation of Yunnan Province, Baoshan, Yunnan, China
| | - Xianwen Wang
- Baoshan Comprehensive Inspection Center For Quality Technology Supervision, Baoshan, China
| | - Na An
- Spice and Beverage Research Institute of Chinese Academy of Tropical Agricultural Science, Wanning, Hainan, China
| | - Yunping Dong
- College of Tropical Crop Science, Yunnan Agricultural University, Kunming, Yunnan, China
- Baoshan Comprehensive Inspection Center For Quality Technology Supervision, Baoshan, China
| | - Jun Tan
- Spice and Beverage Research Institute of Chinese Academy of Tropical Agricultural Science, Wanning, Hainan, China
| | - Yuzhou Long
- Spice and Beverage Research Institute of Chinese Academy of Tropical Agricultural Science, Wanning, Hainan, China
| | - Zhiqing Lu
- Spice and Beverage Research Institute of Chinese Academy of Tropical Agricultural Science, Wanning, Hainan, China
- College of Tropical Crop Science, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Lihua Li
- College of Tropical Crop Science, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
3
|
Li B, Wu B, Dong Y, Lin H, Liu C. Endophyte inoculation enhanced microbial metabolic function in the rhizosphere benefiting cadmium phytoremediation by Phytolaccaacinosa. CHEMOSPHERE 2023; 338:139421. [PMID: 37429380 DOI: 10.1016/j.chemosphere.2023.139421] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/12/2023]
Abstract
Microbial metabolic activities in rhizosphere soil play a critical role in plant nutrient utilization and metal availability. However, its specific characteristics and influence on endophyte assisted phytoremediation remains unclear. In this study, an endophyte strain Bacillus paramycoides (B. paramycoides) was inoculated in the rhizosphere of Phytolacca acinosa (P. acinosa), and microbial metabolic characteristics of rhizosphere soils were analyzed using Biolog system to investigate how they influence phytoremediation performance of different types of cadmium contaminated soil. The results indicated that endophyte B. paramycoides inoculation enhanced bioavailable Cd percentage by 9-32%, resulting in the increased Cd uptake (32-40%) by P. acinosa. With endophyte inoculation, the utilization of carbon sources was significantly promoted by 4-43% and the microbial metabolic functional diversity increased by 0.4-36.8%. Especially, B. paramycoides enhanced the utilization of recalcitrant substrates carboxyl acids, phenolic compounds and polymers by 48.3-225.6%, 42.4-65.8% and 15.6-25.1%, respectively. Further, the microbial metabolic activities were significant correlated with rhizosphere soil microecology properties and impact phytoremediation performance. This study provided new insight into the microbial processes during endophyte assisted phytoremediation.
Collapse
Affiliation(s)
- Bing Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Beibei Wu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| | - Chenjing Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| |
Collapse
|
4
|
Sun X, Anoopkumar AN, Aneesh EM, Madhavan A, Binod P, Kuddus M, Pandey A, Sindhu R, Awasthi MK. Hormesis-tempting stressors driven by evolutionary factors for mitigating negative impacts instigated over extended exposure to chemical elements. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121246. [PMID: 36764380 DOI: 10.1016/j.envpol.2023.121246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
The adaptive responses to moderate environmental challenges by the biological systems have usually been credited to hormesis. Since the hormetic biphasic dose-response illustrates a prominent pattern towards biological responsiveness, the studies concerning such aspects will get much more significance in risk assessment practices and toxicological evaluation research. From this point of view, the past few epochs have witnessed the extending recognition of the notion concerning hormesis. The extraction of its basic foundations of evolutionary perspectives-along with the probable underlying molecular and cellular mechanisms followed by the practical implications to enhance the quality of life. To get better and more effective output in this regard, the present article has evaluated the various observations of previous investigations. The intent of integrating the novel inferences concerning the hormesis-tempting stressors driven by predominant evolutionary factors for mitigating the adverse impacts that were prompted over frequent and continuous exposure to the various chemical elements. Such inferences can offer extensive insight into the implications concerning the risk assessment of hormesis.
Collapse
Affiliation(s)
- Xinwei Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712 100, China
| | - A N Anoopkumar
- Centre for Research in Emerging Tropical Diseases (CRET-D), Department of Zoology, University of Calicut, Malappuram, Kerala, India
| | - Embalil Mathachan Aneesh
- Centre for Research in Emerging Tropical Diseases (CRET-D), Department of Zoology, University of Calicut, Malappuram, Kerala, India
| | - Aravind Madhavan
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, 690525, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, 695 019, Kerala, India
| | - Mohammed Kuddus
- Department of Biochemistry, University of Hail, Kingdom of Saudi Arabia
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR- Indian Institute for Toxicology Research (CSIR-IITR), 31 MG Marg, Lucknow, 226 001, India; Centre for Energy and Environmental Sustainability, Lucknow, 226 029, Uttar Pradesh, India; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248 007, India
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam, 691 505, Kerala, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712 100, China.
| |
Collapse
|
5
|
Wang Y, Liu L, Hu Y, Zhang J, Jia R, Huang Q, Gao H, Awasthi MK, Li H, Zhao Z. The spatio-temporal change in soil P and P-solubilizing bacteria under clover mulching in apple orchards of Loess Plateau. CHEMOSPHERE 2022; 304:135334. [PMID: 35709835 DOI: 10.1016/j.chemosphere.2022.135334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Cover crop is an effective practice for improving soil quality and increase soil nutrients. However, the spatio-temporal change of soil phosphorus (P) components and P-solubilizing microorganisms in the process of grass succession is not evident. Here, we studied the variation of soil P components and P-solubilizing bacteria at 0-60 cm soil layer under clean tillage (CT) and white clover (WC, Trifolium repens L.) grown for 5, 9, and 14 years in an apple test station on the Loess Plateau, China. This study suggested that clover cover could effectively increase the total P, available P (AP), microbial P, organic P (Po), and inorganic P (Al-P, Ca2-P, Ca8-P and Fe-P) in topsoil (0-20 cm) and AP, Po and inorganic P at 20-40 cm soil layer to improve the soil P bioavailability. The effects of WC living mulch on the soil P forms were more significant with the increase in grass growing years, but this effect was difficult to extend to deep soil. In addition, the WC treatments were beneficial to the growth of P-solubilizing microorganisms in surface soil and improved the alkaline phosphatase activity at 0-40 cm soil layer, mainly including Bacillus, Bradyrhizobium, Nocardioides, Sphingomonas and Streptomyces. This study provided a perspective on the dynamic changes of soil P forms and P-solubilizing microorganisms and under long-term cover crop.
Collapse
Affiliation(s)
- Yuanji Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Li Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Yu Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Jiatao Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Rongjian Jia
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Qianqian Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hua Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China.
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Huike Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Zhengyang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|