1
|
Fan J, Yuan W, Zhang X, Ji B, Du X. Oxygen affinity and light intensity induced robust phosphorus removal and fragile ammonia removal in a non-aerated bacteria-algae system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169013. [PMID: 38040345 DOI: 10.1016/j.scitotenv.2023.169013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
Non-aerated bacteria-algae system gaining O2 through photosynthesis presents an alternative for costly mechanical aeration. This study investigated oxygen supply and performance of nutrients removal at low and high light intensity (LL and HL). The results showed that P removal was high and robust (LL 97 ± 1.8 %, HL 95 % ± 2.9 %), while NH4+-N removal fluctuated dramatically (LL 66 ± 14.7 %, HL 84 ± 8.6 %). Oxygen generated at illumination of 200 μmol m-2 s-1, 6 h was sufficient to sustain aerobic phase for 2.25 g/L MLSS. However, O2 produced by algae was preferentially captured in the order of heterotrophic bacteria (HB), ammonia oxidizing bacteria (AOB), nitrite oxidizing bacteria (NOB). Oxygen affinity coupled with light intensity led to NOB suppression with stable nitrite accumulation ratio of 57 %. Free nitrous acid (FNA) and light stimulated the abundance of denitrifying polyphosphate accumulating organism (DPAO) of Flavobacterium, but with declined P-accumulating metabolism (PAM) of P release, P/C, K/P and Mg/P ratios. Flavobacterium and cyanobacteria Leptolyngbya, along with biologically induced CaP in extracellular polymeric substances was the key to robust P removal. AOB of Ellin6067 and DPAO of Flavobacteria offer a promising scenario for partial nitrification-denitrifying phosphorus removal.
Collapse
Affiliation(s)
- Jie Fan
- College of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Wu Yuan
- College of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xujie Zhang
- College of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Bin Ji
- College of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xingyu Du
- College of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
2
|
Villora-Picó JJ, González-Arias J, Pastor-Pérez L, Odriozola JA, Reina TR. A review on high-pressure heterogeneous catalytic processes for gas-phase CO 2 valorization. ENVIRONMENTAL RESEARCH 2024; 240:117520. [PMID: 37923108 DOI: 10.1016/j.envres.2023.117520] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
This review discusses the importance of mitigating CO2 emissions by valorizing CO2 through high-pressure catalytic processes. It focuses on various key processes, including CO2 methanation, reverse water-gas shift, methane dry reforming, methanol, and dimethyl ether synthesis, emphasizing pros and cons of high-pressure operation. CO2 methanation, methanol synthesis, and dimethyl ether synthesis reactions are thermodynamically favored under high-pressure conditions. However, in the case of methane dry reforming and reverse water-gas shift, applying high pressure, results in decreased selectivity toward desired products and an increase in coke production, which can be detrimental to both the catalyst and the reaction system. Nevertheless, high-pressure utilization proves industrially advantageous for cost reduction when these processes are integrated with Fischer-Tropsch or methanol synthesis units. This review also compiles recent advances in heterogeneous catalysts design for high-pressure applications. By examining the impact of pressure on CO2 valorization and the state of the art, this work contributes to improving scientific understanding and optimizing these processes for sustainable CO2 management, as well as addressing challenges in high-pressure CO2 valorization that are crucial for industrial scaling-up. This includes the development of cost-effective and robust reactor materials and the development of low-cost catalysts that yield improved selectivity and long-term stability under realistic working environments.
Collapse
Affiliation(s)
- J J Villora-Picó
- Inorganic Chemistry Department and Materials Sciences Institute, University of Seville-CSIC, Seville, Spain.
| | - J González-Arias
- Inorganic Chemistry Department and Materials Sciences Institute, University of Seville-CSIC, Seville, Spain
| | - L Pastor-Pérez
- Inorganic Chemistry Department and Materials Sciences Institute, University of Seville-CSIC, Seville, Spain
| | - J A Odriozola
- Inorganic Chemistry Department and Materials Sciences Institute, University of Seville-CSIC, Seville, Spain
| | - T R Reina
- Inorganic Chemistry Department and Materials Sciences Institute, University of Seville-CSIC, Seville, Spain
| |
Collapse
|
3
|
Sun L, Duan S, Zhang S, Cheng W, Wang G, Cao X. Influencing factors and mechanism of CO 2 adsorption capacity of FA-based carbon sequestration materials. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:117225-117237. [PMID: 37864697 DOI: 10.1007/s11356-023-30350-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/04/2023] [Indexed: 10/23/2023]
Abstract
Carbon dioxide mineral carbonisation is a means to achieve permanent carbon dioxide storage, this paper to solid waste materials as the main raw material to prepare fly ash-based carbon dioxide storage materials. Through the design of carbon dioxide adsorption experimental setup to study the main factors affecting the adsorption capacity of the fly ash-based storage materials, the experimental results show that, the fly ash mass fraction decreased from 90 to 10%, the water-cement ratio increased from 0.4 to 0.8 when the CO2 adsorption of fly ash-based materials increased by 82% and 30%, respectively. The effect of strong alkali on CO2 adsorption capacity was also investigated in this paper, and the results showed that the CO2 adsorption of the fly ash-based material sample with 10 ml NaOH added increased by 197% compared with that of the sample with 5 ml NaOH added, whereas the adsorption amount was reduced by 85% when 25 ml NaOH was added instead, which was attributed to the accelerated hydration process of the material due to the excessive alkalinity that consumed the calcium and magnesium ions in the material, and at the same time the production of hydration products hindered the transport of CO2 within the material, which led to a decrease in CO2 adsorption.
Collapse
Affiliation(s)
- Lulu Sun
- College of Safety and Environment Engineering, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China.
- State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China.
- School of Safety Engineering, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, People's Republic of China.
| | - Shoulei Duan
- College of Safety and Environment Engineering, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China
| | - Shuaihu Zhang
- College of Safety and Environment Engineering, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China
| | - Weimin Cheng
- College of Safety and Environment Engineering, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China
- State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China
| | - Gang Wang
- College of Safety and Environment Engineering, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China
- State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China
| | - Xiaoqiang Cao
- College of Safety and Environment Engineering, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China
| |
Collapse
|
4
|
Sun H, Yang M, Gao Z, Wang X, Wu C, Wang Q, Gao M. Economic and environmental evaluation for a closed loop of crude glycerol bioconversion to biodiesel. J Biotechnol 2023; 366:65-71. [PMID: 36907357 DOI: 10.1016/j.jbiotec.2023.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 02/23/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
Crude glycerol, a byproduct of biodiesel production, was utilized as a carbon source to produce microbial lipids by the oleaginous yeast Rhodotorula toruloides in this study. The maximum lipid production and lipid content were 10.56 g/L and 49.52%, respectively, by optimizing fermentation conditions. The obtained biodiesel met the standards of China, the United States, and the European Union. The economic value of biodiesel produced from crude glycerol increased by 48% compared with the sale of crude glycerol. In addition, biodiesel production from crude glycerol could reduce 11,928 tons of carbon dioxide emissions and 55 tons of sulfur dioxide emissions. This study provides a strategy for a closed loop of crude glycerol to biofuel and ensures sustainable and stable development of the biodiesel industries.
Collapse
Affiliation(s)
- Haishu Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Min Yang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhen Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaona Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Chuanfu Wu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Qunhui Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Ming Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| |
Collapse
|
5
|
Hao Z, Wang X, Zhang Y, Zhang R. Probabilistic linguistic evolutionary game with risk perception in applications to carbon emission reduction decision making. APPL INTELL 2022. [DOI: 10.1007/s10489-022-04340-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractCarbon emission reduction, an effective way to facilitate carbon neutrality, has gained increasing attention in government policy and scientific research. However, the establishment of a sustainable carbon emission reduction market is a complex game between governments and enterprises. In addition, it is difficult to obtain precise evaluations of the political and environmental factors in most cases. Irrational enterprises with a profit-seeking nature bring challenges to the strategy selection. To bridge this gap, we propose a probabilistic linguistic evolutionary game to model strategic behavior in carbon emission reduction assistant decision making. First, we introduce a probabilistic linguistic payoff matrix to describe the uncertain payoffs of players. A new distance measure for the probabilistic variables is also proposed to construct the prospect payoff matrix in the prospect theory framework. Then, the evolutionary dynamics and the probabilistic linguistic evolutionary stability of the proposed methods are analyzed. A comprehensive case study for carbon emission reduction with comparisons is presented for validation.
Collapse
|