1
|
Hoek G, Vienneau D, de Hoogh K. Does residential address-based exposure assessment for outdoor air pollution lead to bias in epidemiological studies? Environ Health 2024; 23:75. [PMID: 39289774 PMCID: PMC11406750 DOI: 10.1186/s12940-024-01111-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Epidemiological studies of long-term exposure to outdoor air pollution have consistently documented associations with morbidity and mortality. Air pollution exposure in these epidemiological studies is generally assessed at the residential address, because individual time-activity patterns are seldom known in large epidemiological studies. Ignoring time-activity patterns may result in bias in epidemiological studies. The aims of this paper are to assess the agreement between exposure assessed at the residential address and exposures estimated with time-activity integrated and the potential bias in epidemiological studies when exposure is estimated at the residential address. MAIN BODY We reviewed exposure studies that have compared residential and time-activity integrated exposures, with a focus on the correlation. We further discuss epidemiological studies that have compared health effect estimates between the residential and time-activity integrated exposure and studies that have indirectly estimated the potential bias in health effect estimates in epidemiological studies related to ignoring time-activity patterns. A large number of studies compared residential and time-activity integrated exposure, especially in Europe and North America, mostly focusing on differences in level. Eleven of these studies reported correlations, showing that the correlation between residential address-based and time-activity integrated long-term air pollution exposure was generally high to very high (R > 0.8). For individual subjects large differences were found between residential and time-activity integrated exposures. Consistent with the high correlation, five of six identified epidemiological studies found nearly identical health effects using residential and time-activity integrated exposure. Six additional studies in Europe and North America showed only small to moderate potential bias (9 to 30% potential underestimation) in estimated exposure response functions using residence-based exposures. Differences of average exposure level were generally small and in both directions. Exposure contrasts were smaller for time-activity integrated exposures in nearly all studies. The difference in exposure was not equally distributed across the population including between different socio-economic groups. CONCLUSIONS Overall, the bias in epidemiological studies related to assessing long-term exposure at the residential address only is likely small in populations comparable to those evaluated in the comparison studies. Further improvements in exposure assessment especially for large populations remain useful.
Collapse
Affiliation(s)
- Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands.
| | - Danielle Vienneau
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
2
|
Li Z, Wen J, Wu W, Dai Z, Liang X, Zhang N, Cheng Q, Zhang H. Causal relationship and shared genes between air pollutants and amyotrophic lateral sclerosis: A large-scale genetic analysis. CNS Neurosci Ther 2024; 30:e14812. [PMID: 38970158 PMCID: PMC11226412 DOI: 10.1111/cns.14812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 05/23/2024] [Accepted: 06/02/2024] [Indexed: 07/08/2024] Open
Abstract
OBJECTIVE Air pollutants have been reported to have a potential relationship with amyotrophic lateral sclerosis (ALS). The causality and underlying mechanism remained unknown despite several existing observational studies. We aimed to investigate the potential causality between air pollutants (PM2.5, NOX, and NO2) and the risk of ALS and elucidate the underlying mechanisms associated with this relationship. METHODS The data utilized in our study were obtained from publicly available genome-wide association study data sets, in which single nucleotide polymorphisms (SNPs) were employed as the instrumental variantswith three principles. Two-sample Mendelian randomization and transcriptome-wide association (TWAS) analyses were conducted to evaluate the effects of air pollutants on ALS and identify genes associated with both pollutants and ALS, followed by regulatory network prediction. RESULTS We observed that exposure to a high level of PM2.5 (OR: 2.40 [95% CI: 1.26-4.57], p = 7.46E-3) and NOx (OR: 2.35 [95% CI: 1.32-4.17], p = 3.65E-3) genetically increased the incidence of ALS in MR analysis, while the effects of NO2 showed a similar trend but without sufficient significance. In the TWAS analysis, TMEM175 and USP35 turned out to be the genes shared between PM2.5 and ALS in the same direction. CONCLUSION Higher exposure to PM2.5 and NOX might causally increase the risk of ALS. Avoiding exposure to air pollutants and air cleaning might be necessary for ALS prevention.
Collapse
Affiliation(s)
- Zhihao Li
- Department of NeurosurgeryThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Jie Wen
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Wantao Wu
- Department of Oncology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Xisong Liang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and TechnologyWuhanChina
| | - Quan Cheng
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Hao Zhang
- Department of NeurosurgeryThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| |
Collapse
|
3
|
Liu L, Wang T, Xu H, Zhu Y, Guan X, He X, Fang J, Xie Y, Zhang Q, Song X, Zhao Q, Huang W. Exposure to ambient oxidant pollution associated with ceramide changes and cardiometabolic responses. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 103:104276. [PMID: 37717721 DOI: 10.1016/j.etap.2023.104276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/23/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Evidence of impact of ambient oxidant pollution on cardiometabolic responses remains limited. We aimed to examine associations of oxidant pollutants with cardiometabolic responses, and effect modification by ceramides. During 2019-2020, 152 healthy adults were visited 4 times in Beijing, China, and indicators of ceramides, glucose homeostasis, and vascular function were measured. We found significant increases in ceramides of 13.9% (p = 0.020) to 110.1% (p = 0.005) associated with an interquartile increase in oxidant pollutants at prior 1-7 days. Exposure to oxidant pollutants was also related to elevations in insulin and reductions in adiponectin, and elevations in systolic and diastolic blood pressure. Further, stratified analyses revealed larger changes in oxidant pollutant related cardiometabolic responses among participants with higher ceramide levels compared to those with lower levels. Our findings suggested cardiometabolic effects associated with exposure to oxidant pollutants, which may be modified by ceramide levels.
Collapse
Affiliation(s)
- Lingyan Liu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; Department of Geriatrics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China; State Key Laboratory of Vascular Homeostasis and Remodeling,Peking University, Beijing, China
| | - Tong Wang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China; State Key Laboratory of Vascular Homeostasis and Remodeling,Peking University, Beijing, China
| | - Hongbing Xu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling,Peking University, Beijing, China.
| | - Yutong Zhu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling,Peking University, Beijing, China
| | - Xinpeng Guan
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling,Peking University, Beijing, China
| | - Xinghou He
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling,Peking University, Beijing, China
| | - Jiakun Fang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling,Peking University, Beijing, China
| | - Yunfei Xie
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling,Peking University, Beijing, China
| | - Qiaochi Zhang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling,Peking University, Beijing, China
| | - Xiaoming Song
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling,Peking University, Beijing, China
| | - Qian Zhao
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling,Peking University, Beijing, China
| | - Wei Huang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling,Peking University, Beijing, China.
| |
Collapse
|
4
|
Münzel T, Sørensen M, Hahad O, Nieuwenhuijsen M, Daiber A. The contribution of the exposome to the burden of cardiovascular disease. Nat Rev Cardiol 2023; 20:651-669. [PMID: 37165157 DOI: 10.1038/s41569-023-00873-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 05/12/2023]
Abstract
Large epidemiological and health impact assessment studies at the global scale, such as the Global Burden of Disease project, indicate that chronic non-communicable diseases, such as atherosclerosis and diabetes mellitus, caused almost two-thirds of the annual global deaths in 2020. By 2030, 77% of all deaths are expected to be caused by non-communicable diseases. Although this increase is mainly due to the ageing of the general population in Western societies, other reasons include the increasing effects of soil, water, air and noise pollution on health, together with the effects of other environmental risk factors such as climate change, unhealthy city designs (including lack of green spaces), unhealthy lifestyle habits and psychosocial stress. The exposome concept was established in 2005 as a new strategy to study the effect of the environment on health. The exposome describes the harmful biochemical and metabolic changes that occur in our body owing to the totality of different environmental exposures throughout the life course, which ultimately lead to adverse health effects and premature deaths. In this Review, we describe the exposome concept with a focus on environmental physical and chemical exposures and their effects on the burden of cardiovascular disease. We discuss selected exposome studies and highlight the relevance of the exposome concept for future health research as well as preventive medicine. We also discuss the challenges and limitations of exposome studies.
Collapse
Affiliation(s)
- Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| | - Mette Sørensen
- Danish Cancer Society, Copenhagen, Denmark
- Department of Natural Science and Environment, Roskilde University, Roskilde, Denmark
| | - Omar Hahad
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Mark Nieuwenhuijsen
- Institute for Global Health (ISGlobal), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), PRBB building (Mar Campus), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| |
Collapse
|
5
|
Liu Y, Li Y, Xu H, Zhao X, Zhu Y, Zhao B, Yao Q, Duan H, Guo C, Li Y. Pre- and postnatal particulate matter exposure and blood pressure in children and adolescents: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2023; 223:115373. [PMID: 36731599 DOI: 10.1016/j.envres.2023.115373] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/10/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Early life is a susceptible period of air pollution-related adverse health effects. Hypertension in children might be life-threatening without prevention or treatment. Nevertheless, the causative association between environmental factors and childhood hypertension was limited. In the light of particulate matter (PM) as an environmental risk factor for cardiovascular diseases, this study investigated the association of pre- and postnatal PM exposure with blood pressure (BP) and hypertension among children and adolescents. METHOD Four electronic databases were searched for related epidemiological studies published up to September 13, 2022. Stata 14.0 was applied to examine the heterogeneity among the studies and evaluate the combined effect sizes per 10 μg/m3 increase of PM by selecting the corresponding models. Besides, subgroup analysis, sensitivity analysis, and publication bias test were also conducted. RESULTS Prenatal PM2.5 exposure was correlated with increased diastolic blood pressure (DBP) in offspring [1.14 mmHg (95% CI: 0.12, 2.17)]. For short-term postnatal exposure effects, PM2.5 (7-day average) was significantly associated with systolic blood pressure (SBP) [0.20 mmHg (95% CI: 0.16, 0.23)] and DBP [0.49 mmHg (95% CI: 0.45, 0.53)]; and also, PM10 (7-day average) was significantly associated with SBP [0.14 mmHg (95% CI: 0.12, 0.16)]. For long-term postnatal exposure effects, positive associations were manifested in SBP with PM2.5 [β = 0.44, 95% CI: 0.40, 0.48] and PM10 [β = 0.35, 95% CI: 0.19, 0.51]; DBP with PM1 [β = 0.45, 95% CI: 0.42, 0.49], PM2.5 [β = 0.31, 95% CI: 0.27, 0.35] and PM10 [β = 0.32, 95% CI: 0.19, 0.45]; and hypertension with PM1 [OR = 1.43, 95% CI: 1.40, 1.46], PM2.5 [OR = 1.65, 95% CI: 1.29, 2.11] and PM10 [OR = 1.26, 95% CI: 1.09, 1.45]. CONCLUSION Both prenatal and postnatal exposure to PM can increase BP, contributing to a higher prevalence of hypertension in children and adolescents.
Collapse
Affiliation(s)
- Yufan Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yan Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Hailin Xu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xinying Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yawen Zhu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Bosen Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Qing Yao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Huawei Duan
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Caixia Guo
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China.
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
6
|
Li Y, Liu Y, Lu Y, Liu Z, Sui C, Wang Y, Yang L, Liu F, Sun P, Liu F, Lu G. Preparation of BiOI-Functionalized ZnO Nanorods for Ppb-Level NO 2 Detection at Room Temperature. ACS Sens 2022; 7:3915-3922. [PMID: 36417704 DOI: 10.1021/acssensors.2c01988] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Light activation is an effective method to improve sensor performance at room temperature (RT). This work realized the effective detection of trace-level NO2 at RT under visible light by combining ZnO with the excellent photocatalyst BiOI. A 1.5 atom % BiOI-ZnO-based sensor under 520 nm light exhibited optimal sensing properties with the maximum responses (13.9 to 1 ppm NO2), fast response/recovery time (66 s/47 s to 1 ppm), and a low detection limit of 25 ppb (theoretically 0.34 ppb). In the meantime, the sensor also possessed excellent selectivity, repeatability, and stability. The excellent properties were attributed to the high concentration of oxygen vacancies and the prolonged lifetime of photogenerated carriers. In addition, the observed photovoltaic effect of the sensor at RT indicated that the sensor held application prospects in the photovoltaic self-power field.
Collapse
Affiliation(s)
- Yueyue Li
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensor, Jilin Province, College of Electronic Science and Engineering, Jilin University, Changchun130012, China
| | - Yuanzhen Liu
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensor, Jilin Province, College of Electronic Science and Engineering, Jilin University, Changchun130012, China
| | - Yi Lu
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensor, Jilin Province, College of Electronic Science and Engineering, Jilin University, Changchun130012, China
| | - Ziqi Liu
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensor, Jilin Province, College of Electronic Science and Engineering, Jilin University, Changchun130012, China
| | - Chengming Sui
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensor, Jilin Province, College of Electronic Science and Engineering, Jilin University, Changchun130012, China
| | - Yilin Wang
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensor, Jilin Province, College of Electronic Science and Engineering, Jilin University, Changchun130012, China
| | - Lin Yang
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensor, Jilin Province, College of Electronic Science and Engineering, Jilin University, Changchun130012, China
| | - Fengmin Liu
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensor, Jilin Province, College of Electronic Science and Engineering, Jilin University, Changchun130012, China
| | - Peng Sun
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensor, Jilin Province, College of Electronic Science and Engineering, Jilin University, Changchun130012, China.,International Center of Future Science, Jilin University, Changchun130012, China
| | - Fangmeng Liu
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensor, Jilin Province, College of Electronic Science and Engineering, Jilin University, Changchun130012, China.,International Center of Future Science, Jilin University, Changchun130012, China
| | - Geyu Lu
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensor, Jilin Province, College of Electronic Science and Engineering, Jilin University, Changchun130012, China.,International Center of Future Science, Jilin University, Changchun130012, China
| |
Collapse
|
7
|
Chen P, Yuan Z, Miao L, Yang L, Wang H, Xu D, Lin Z. Acute cardiorespiratory response to air quality index in healthy young adults. ENVIRONMENTAL RESEARCH 2022; 214:113983. [PMID: 35948148 DOI: 10.1016/j.envres.2022.113983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/27/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Little is known about the acute health impacts of air quality index (AQI) on cardiorespiratory risk factors. OBJECTIVES To assess the short-term links of AQI with cardiorespiratory risk factors in young healthy adults. METHODS We performed a longitudinal panel study with 4 repeated visits in 40 healthy young adults in Hefei, Anhui Province, China from August to October 2021. Cardiorespiratory factors included systolic blood pressure (BP), diastolic BP (DBP), mean arterial pressure (MAP) and fractional exhaled nitric oxide (FeNO). We collected hourly AQI data from a nearby air quality monitoring site. Linear mixed-effects model was applied to assess the effects of AQI on BP and FeNO. RESULTS The study participants (75.0% females) provided 160 pairs of valid health measurements with average age of 24 years. The mean AQI level was 44.43 during the study period. There were significant positive associations of AQI with three BP parameters and FeNO at different lag periods. For example, an interquartile range increase in AQI (26.54 unit) over lag 0-24 h was associated with increments of 6.69 mmHg (95%CI: 2.95-10.44), 5.71 mmHg (95%CI: 3.30-8.13), 6.04 mmHg (95%CI: 3.46-8.62) and 5.67% (95%CI: 1.05%-16.05%) in SBP, DBP, MAP and FeNO, respectively. The results were robust after controlling for PM1. We did not find effect modifications by gender, BMI, physical activity, or AQI category level on the associations. CONCLUSIONS The current findings on associations of AQI with cardiorespiratory factors might add evidence of the acute adverse cardiorespiratory consequences following air pollution.
Collapse
Affiliation(s)
- Ping Chen
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Zhi Yuan
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Lin Miao
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Liyan Yang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Dexiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China.
| | - Zhijing Lin
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|