1
|
El-Khawaga AM, Elsaidy A, Correa-Duarte MA, Elbasuney S. Unveiling the photocatalytic and antimicrobial activities of star-shaped gold nanoparticles under visible spectrum. Sci Rep 2025; 15:1201. [PMID: 39774956 PMCID: PMC11706953 DOI: 10.1038/s41598-024-82332-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
This study reports on the facile development of star-shaped gold nanoparticles via seed-mediated growth protocol. Gold nanostars (AuNSTs) demonstrated average particle size of 48 nm using transmission electron microscopy (TEM). Chemical composition of AuNSTs was verifired using energy dispersive X-ray spectroscopy (EDX) mapping. AuNSTs demonstrated high optical response under visible spectrum, with maximum absorption at 685 nm, using UV-Vis spectroscopy. Therefore AuNSTs could be involoved into photocatalytic reaction under visible spectrum. AuNSTs demonstrated superior performance in degradation of rhodamine B dye (RB), and disinfection of some pathogenic bacteria. AuNSTs offered enhanced removal efficiency against rhodamine B dye (82.0 ± 0.35% in 135 min) under visible irradiation. Remarkably, under proper conditions of pH = 9, approximately 94 ± 0.55% of a 10 ppm RB solution was effectively photodegraded after 135 min; this could be ascribed to the strong electrostatic attraction between negatively charged AuNSTs surface and positive RB contaminant. This superior photocatalytic activity of AuNSTs could be correlated to high interfacial charge transfer efficiency for Au, and enhanced charge pair separation under visible spectrum. Additionally, AuNSTs exhibited potential antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). AuNSTs demonstrated substantial antibacterial activity via disk diffusion and microbroth dilution tests with zones of inhibition and minimum inhibitory concentrations (MIC) for E. coli (20.0 ± 0.54 mm, 1.25 µg/ml) and S. aureus (23.0 ± 0.35 mm, 0.625 µg/ml), respectively. In conclusion, AuNSTs demonstrated efficient dye removal capabilities along with significant antimicrobial activity against gram-positive and gram-negative bacterial strains.
Collapse
Affiliation(s)
- Ahmed M El-Khawaga
- Department of Basic Medical Sciences, Faculty of Medicine, Galala University, New Galala City, Suez, Egypt.
| | - Amir Elsaidy
- School of Chemical engineering, Military Technical College, Cairo, Egypt.
| | - Miguel A Correa-Duarte
- Department of Physical Chemistry, Biomedical Research Center (CINBIO), Institute of Biomedical Research of Ourense-Pontevedra-Vigo (IBI), Universidad de Vigo, 36310, Vigo, Spain
| | - Sherif Elbasuney
- School of Chemical engineering, Military Technical College, Cairo, Egypt
- Head of Nanotechnology Research Center, Military Technical College, Egyptian Armed Forces, Cairo, Egypt
| |
Collapse
|
2
|
Duman H, Akdaşçi E, Eker F, Bechelany M, Karav S. Gold Nanoparticles: Multifunctional Properties, Synthesis, and Future Prospects. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1805. [PMID: 39591046 PMCID: PMC11597081 DOI: 10.3390/nano14221805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024]
Abstract
Gold nanoparticles (NPs) are among the most commonly employed metal NPs in biological applications, with distinctive physicochemical features. Their extraordinary optical properties, stemming from strong localized surface plasmon resonance (LSPR), contribute to the development of novel approaches in the areas of bioimaging, biosensing, and cancer research, especially for photothermal and photodynamic therapy. The ease of functionalization with various ligands provides a novel approach to the precise delivery of these molecules to targeted areas. Gold NPs' ability to transfer heat and electricity positions them as valuable materials for advancing thermal management and electronic systems. Moreover, their inherent characteristics, such as inertness, give rise to the synthesis of novel antibacterial and antioxidant agents as they provide a biocompatible and low-toxicity approach. Chemical and physical synthesis methods are utilized to produce gold NPs. The pursuit of more ecologically sustainable and economically viable large-scale technologies, such as environmentally benign biological processes referred to as green/biological synthesis, has garnered increasing interest among global researchers. Green synthesis methods are more favorable than other synthesis techniques as they minimize the necessity for hazardous chemicals in the reduction process due to their simplicity, cost-effectiveness, energy efficiency, and biocompatibility. This article discusses the importance of gold NPs, their optical, conductivity, antibacterial, antioxidant, and anticancer properties, synthesis methods, contemporary uses, and biosafety, emphasizing the need to understand toxicology principles and green commercialization strategies.
Collapse
Affiliation(s)
- Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (H.D.); (E.A.); (F.E.)
| | - Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (H.D.); (E.A.); (F.E.)
| | - Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (H.D.); (E.A.); (F.E.)
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR 5635, University Montpellier, ENSCM, CNRS, F-34095 Montpellier, France
- Functional Materials Group, Gulf University for Science and Technology (GUST), Masjid Al Aqsa Street, Mubarak Al-Abdullah 32093, Kuwait
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (H.D.); (E.A.); (F.E.)
| |
Collapse
|
3
|
Ameen F. Green synthesis spinel ferrite nanosheets and their cytotoxicity and antibacterial activity. BIOMASS CONVERSION AND BIOREFINERY 2024; 14:26883-26894. [DOI: 10.1007/s13399-022-03638-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 01/03/2025]
|
4
|
Dharshini KS, Ameen F, Anbazhagan V. Mechanistic Investigation on the Antibacterial Activity of Biogenic Silver Nanoparticles Prepared Using Root Extract of Sarsaparilla and Demonstrated their In Vivo Efficacy in Zebrafish Model. Curr Microbiol 2024; 81:268. [PMID: 39003685 DOI: 10.1007/s00284-024-03794-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024]
Abstract
Antibiotic success rates are decreasing as drug-resistant bacteria become more prevalent, prompting the development of new therapeutic drugs. Herein, we demonstrated the antimicrobial activity of sarsaparilla root extract fabricated silver nanoparticles (sAgNPs). The UV-Visible spectra revealed that the surface Plasmon resonance maxima of sAgNPs were at 415 nm. Transmission electron microscopy confirms that the particles are spherical with size of 12-35 nm. The minimum inhibitory concentration (MIC) of sAgNPs against Escherichia coli, uropathogenic Escherichia coli, Pseudomonas aeruginosa, Enterococcus faecalis, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus was 62.5, 62.5, 62.5, 62.5, 125 and 125 µM, respectively. At 1X MIC, sAgNPs induces excess reactive oxygen species (ROS) production and disturbs the bacteria membrane intergity, causing cytoplamic membrane depolarization. Interestingly, antibacterial activity of sAgNPs was considerably reduced in the presence of an antioxidant, N-acetyl cysteine, suggesting that ROS-induced membrane damage is a plausible cause of cell death. In contrast to many studies that only report the in vitro activity of NPs, we determined the in vivo antibacterial efficacy using the zebrafish model. It was found that sAgNPs protect fish from infection by inhibiting bacterial growth and eliminating them from the fish. In addition, the catalytic potential of sAgNPs for wastewater decontamination was demonstrated by degrading organic pollutants such as methyl orange, congo red, reactive black, and acid blue. The pollutants degraded in less than 10 min, and the reaction follows pseudo-first-order kinetics. As a proof of concept, the catalytic potential of sAgNPs in degrading mixed dyes to satisfy industrial wastewater treatment needs was established. In summary, sAgNPs have the potential to act as nanocatalysts and nano-drugs, addressing key challenges in medical and environmental research.
Collapse
Affiliation(s)
- Karnan Singaravelu Dharshini
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613 401, India
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Veerappan Anbazhagan
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613 401, India.
| |
Collapse
|
5
|
Alijani HQ, Fathi A, Amin HIM, Lima Nobre MA, Akbarizadeh MR, Khatami M, Jalil AT, Naderifar M, Dehkordi FS, Shafiee A. Biosynthesis of core–shell α-Fe2O3@Au nanotruffles and their biomedical applications. BIOMASS CONVERSION AND BIOREFINERY 2024; 14:15785-15799. [DOI: 10.1007/s13399-022-03561-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 01/03/2025]
|
6
|
Ahmad I, Al-Dolaimy F, Kzar MH, Kareem AT, Mizal TL, Omran AA, Alazbjee AAA, Obaidur Rab S, Eskandar M, Alawadi AH, Alsalamy A. Microfluidic-based nanoemulsion of Ocimum basilicum extract: Constituents, stability, characterization, and potential biomedical applications for improved antimicrobial and anticancer properties. Microsc Res Tech 2024; 87:411-423. [PMID: 37877737 DOI: 10.1002/jemt.24444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/29/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023]
Abstract
This paper reports on the findings from a study that aimed to identify and characterize the constituents of Ocimum basilicum extract using gas chromatography-mass spectrometry (GC-MS) analysis, as well as assess the physicochemical properties and stability of nanoemulsions formulated with O. basilicum extract. The GC-MS analysis revealed that the O. basilicum extract contained 22 components, with Caryophyllene and Naringenin identified as the primary active constituents. The nanoemulsion formulation demonstrated excellent potential for use in the biomedical field, with a small and uniform particle size distribution, a negative zeta potential, and high encapsulation efficiency for the O. basilicum extract. The nanoemulsions exhibited spherical morphology and remained physically stable for up to 6 months. In vitro release studies indicated sustained release of the extract from the nanoemulsion formulation compared to the free extract solution. Furthermore, the developed nanoformulation exhibited enhanced anticancer properties against K562 cells while demonstrating low toxicity in normal cells (HEK293). The O. basilicum extract demonstrated antimicrobial activity against Pseudomonas aeruginosa, Candida albicans, and Staphylococcus epidermidis, with a potential synergistic effect observed when combined with the nanoemulsion. These findings contribute to the understanding of the constituents and potential applications of O. basilicum extract and its nanoemulsion formulation in various fields, including healthcare and pharmaceutical industries. Further optimization and research are necessary to maximize the efficacy and antimicrobial activity of the extract and its nanoformulation. RESEARCH HIGHLIGHTS: This study characterized the constituents of O. basilicum extract and assessed the physicochemical properties and stability of its nanoemulsion formulation. The O. basilicum extract contained 22 components, with Caryophyllene and Naringenin identified as the primary active constituents. The nanoemulsion formulation demonstrated excellent potential for biomedical applications, with sustained release of the extract, low toxicity, and enhanced anticancer and antimicrobial properties. The findings contribute to the understanding of the potential applications of O. basilicum extract and its nanoemulsion formulation in healthcare and pharmaceutical industries, highlighting the need for further optimization and research.
Collapse
Affiliation(s)
- Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - Mazin Hadi Kzar
- College of Physical Education and Sport Sciences, Al-Mustaqbal University, Hillah, Babil, Iraq
| | - Ashwaq Talib Kareem
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Thair L Mizal
- Department of Medical Engineering, Al-Esraa University College, Baghdad, Iraq
| | - Aisha A Omran
- Department of Medical Engineering, AL-Nisour University College, Baghdad, Iraq
| | | | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mamdoh Eskandar
- Department of Obstetrics and Gynecology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Hussien Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, Iraq
| |
Collapse
|
7
|
Mutalik C, Nivedita, Sneka C, Krisnawati DI, Yougbaré S, Hsu CC, Kuo TR. Zebrafish Insights into Nanomaterial Toxicity: A Focused Exploration on Metallic, Metal Oxide, Semiconductor, and Mixed-Metal Nanoparticles. Int J Mol Sci 2024; 25:1926. [PMID: 38339204 PMCID: PMC10856345 DOI: 10.3390/ijms25031926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/27/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Nanomaterials are widely used in various fields, and ongoing research is focused on developing safe and sustainable nanomaterials. Using zebrafish as a model organism for studying the potentially toxic effects of nanomaterials highlights the importance of developing safe and sustainable nanomaterials. Studies conducted on nanomaterials and their toxicity and potential risks to human and environmental health are vital in biomedical sciences. In the present review, we discuss the potential toxicity of nanomaterials (inorganic and organic) and exposure risks based on size, shape, and concentration. The review further explores various types of nanomaterials and their impacts on zebrafish at different levels, indicating that exposure to nanomaterials can lead to developmental defects, changes in gene expressions, and various toxicities. The review also covers the importance of considering natural organic matter and chorion membranes in standardized nanotoxicity testing. While some nanomaterials are biologically compatible, metal and semiconductor nanomaterials that enter the water environment can increase toxicity to aquatic creatures and can potentially accumulate in the human body. Further investigations are necessary to assess the safety of nanomaterials and their impacts on the environment and human health.
Collapse
Affiliation(s)
- Chinmaya Mutalik
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan;
| | - Nivedita
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (N.); (C.S.)
| | - Chandrasekaran Sneka
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (N.); (C.S.)
| | - Dyah Ika Krisnawati
- Department of Nursing, Faculty of Nursing and Midwifery, Universitas Nahdlatul Ulama Surabaya, Surabaya 60237, East Java, Indonesia;
| | - Sibidou Yougbaré
- Institut de Recherche en Sciences de La Santé/Direction Régionale du Centre Ouest (IRSS/DRCO), Nanoro BP 218, 11, Burkina Faso;
| | - Chuan-Chih Hsu
- Division of Cardiovascular Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiovascular Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Tsung-Rong Kuo
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan;
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (N.); (C.S.)
- Stanford Byers Center for Biodesign, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
8
|
Dousari AS, Hosseininasab SS, Akbarizadeh MR, Naderifar M, Mahdavi A, Satarzadeh N. A review on immunoglobulin Y (IgY) conjugated with metal nanoparticles and biomedical uses. Bioprocess Biosyst Eng 2023; 46:1533-1538. [PMID: 37493807 DOI: 10.1007/s00449-023-02909-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023]
Abstract
Today, the use of nanoparticles has attracted considerable attention in biomedical investigations and applications. Antibody-nanoparticle conjugates have proven to be useful tools for raising accuracy and sensitivity in in vitro diagnostics. IgY antibodies have benefits over different antibodies in terms of minimizing animal harm, reducing reactivity with mammalian factors, and cost-effective extraction. Metal nanoparticles are widely used for various medical and biological applications and are potential candidates for identifying pathogens and treating them, which can be mostly related to their special properties, including their shape and size. Avian IgY antibodies conjugated with nanoparticles have been widely used for the detection of parasitic, viral, and bacterial infections as well as allergens and toxicological and pharmaceutical molecules. This review aimed to investigate avian antibodies conjugated with metal nanoparticles and their biological applications.
Collapse
Affiliation(s)
- Amin Sadeghi Dousari
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | | | - Mahin Naderifar
- School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Amin Mahdavi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Naghmeh Satarzadeh
- Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.
- Student Research Committee, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
9
|
Wu Y, Parandoust A, Sheibani R, Kargaran F, Khorsandi Z, Liang Y, Xia C, Van Le Q. Advances in gum-based hydrogels and their environmental applications. Carbohydr Polym 2023; 318:121102. [PMID: 37479451 DOI: 10.1016/j.carbpol.2023.121102] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/23/2023]
Abstract
Gum-based hydrogels (GBHs) have been widely employed in diverse water purification processes due to their environmental properties, and high absorption capacity. More desired properties of GBHs such as biodegradability, biocompatibility, material cost, simplicity of manufacture, and wide range of uses have converted them into promising materials in water treatment processes. In this review, we explored the application of GBHs to remove pollutants from contaminated waters. Water resources are constantly being contaminated by a variety of harmful effluents such as heavy metals, dyes, and other dangerous substances. A practical way to remove chemical waste from water as a vital component is surface adsorption. Currently, hydrogels, three-dimensional polymeric networks, are quite popular for adsorption. They have more extensive uses in several industries, including biomedicine, water purification, agriculture, sanitary products, and biosensors. This review will help the researcher to understand the research gaps and drawbacks in this field, which will lead to further developments in the future.
Collapse
Affiliation(s)
- Yingji Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Ahmad Parandoust
- Farabi Educational Institute, Moghadas Ardebili St., Mahmoodiye St., No 13, 1986743413 Tehran, Iran
| | - Reza Sheibani
- Amirkabir University of Technology-Mahshahr Campus, University St., Nahiyeh san'ati, Mahshahr, Khouzestan, Iran.
| | - Farshad Kargaran
- Department of Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Zahra Khorsandi
- Amirkabir University of Technology-Mahshahr Campus, University St., Nahiyeh san'ati, Mahshahr, Khouzestan, Iran
| | - Yunyi Liang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Quyet Van Le
- Department of Materials Science and Engineering, Institute of Green Manufacturing Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
10
|
Al-Enazi NM, Alsamhary K, Ameen F, Kha M. Plant extract-mediated synthesis Cobalt doping in zinc oxide nanoparticles and their in vitro cytotoxicity and antibacterial performance. Heliyon 2023; 9:e19659. [PMID: 37809416 PMCID: PMC10558898 DOI: 10.1016/j.heliyon.2023.e19659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023] Open
Abstract
In this research, zinc oxide (ZnO) nanoparticles doped with different percentages of produced cobalt using the green synthesis method. ZnO nanoparticles showed good cellular and microbial toxicity due to their high surface-to-volume ratio. Adding cobalt metal to the nanostructure can lead to the appearance of a new feature. To investigate the effect of adding cobalt metal, synthesized ZnO nanoparticles containing 3 and 6% cobalt were synthesized using plant extract. The resulting nanostructures were characterized by a Raman spectroscopy, UV-Visible spectrometer, X-ray diffraction, and Field emission scanning electron microscopy. Ultimately, the synthesized samples' cytotoxicity and antimicrobial tests were performed. XRD confirmed the formation of a hexagonal wurtzite ZnO structure. XRD and electron imaging showed that doping resulted in a decrease in average crystal size. The results showed that with cobalt doping, the particle size decreased slightly. The cytotoxicity and antimicrobial effects results showed that in all three studies, cobalt doping leads to an increase in the toxicity of this nanostructure compared to non-doped nanoparticles.
Collapse
Affiliation(s)
- Nouf M. Al-Enazi
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Khawla Alsamhary
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Fuad Ameen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mansour Kha
- Antibacterial Materials R&D Centre, Huzhou Institute, Huzhou, Zhejiang, China
| |
Collapse
|
11
|
Rojas MA, Amalraj J, Santos LS. Biopolymer-Based Composite Hydrogels Embedding Small Silver Nanoparticles for Advanced Antimicrobial Applications: Experimental and Theoretical Insights. Polymers (Basel) 2023; 15:3370. [PMID: 37631426 PMCID: PMC10458816 DOI: 10.3390/polym15163370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
In this work, we report a two-step methodology for the synthesis of small silver nanoparticles embedded into hydrogels based on chitosan (CS) and hydroxypropyl methylcellulose (HPMC) biopolymers. This method uses d-glucose as an external green reducing agent and purified water as a solvent, leading to an eco-friendly, cost-effective, and biocompatible process for the synthesis of silver nanocomposite hydrogels. Their characterization comprises ultraviolet-visible spectroscopy, Fourier-transform infrared spectra, differential scanning calorimetry, scanning electron microscopy with energy-dispersive spectroscopy, and transmission electron microscopy assays. Moreover, the structural stability of the hydrogels was investigated through sequential swelling-deswelling cycles. The nanomaterials showed good mechanical properties in terms of their structural stability and revealed prominent antibacterial properties due to the reduced-size particles that promote their use as new advanced antimicrobial agents, an advantage compared to conventional particles in aqueous suspension that lose stability and effectiveness. Finally, theoretical analyses provided insights into the possible interactions, charge transfer, and stabilization process of nanoclusters mediated by the high-electron-density groups belonging to CS and HPMC, revealing their unique structural properties in the preparation of nano-scaled materials.
Collapse
Affiliation(s)
- Moises A. Rojas
- Laboratory of Asymmetric Synthesis, Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Chile;
| | - John Amalraj
- Laboratory of Materials Science, Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Chile
| | - Leonardo S. Santos
- Laboratory of Asymmetric Synthesis, Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Chile;
| |
Collapse
|
12
|
Junejo B, Eryilmaz M, Rizvanoglu SS, Palabiyik IM, Ghumro T, Mallah A, Solangi AR, Hyder SI, Maleh HK, Dragoi EN. Pharmacological assessment of Co 3O 4, CuO, NiO and ZnO nanoparticles via antibacterial, anti-biofilm and anti-quorum sensing activities. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:2840-2851. [PMID: 37318927 PMCID: wst_2023_150 DOI: 10.2166/wst.2023.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Infectious diseases have risen dramatically as a result of the resistance of many common antibiotics. Nanotechnology provides a new avenue of investigation for the development of antimicrobial agents that effectively combat infection. The combined effects of metal-based nanoparticles (NPs) are known to have intense antibacterial activities. However, a comprehensive analysis of some NPs regarding these activities is still unavailable. This study uses the aqueous chemical growth method to synthesize Co3O4, CuO, NiO and ZnO NPs. The prepared materials were characterized by scanning electron microscopy, transmission electron microscopy and X-ray diffraction techniques. The antibacterial activities of NPs were tested against Gram-positive and Gram-negative bacteria using the microdilution method, such as the minimum inhibitory concentration (MIC) method. The best MIC value among all the metal oxide NPs was 0.63 against Staphylococcus epidermidis ATCC12228 through ZnO NPs. The other metal oxide NPs also showed satisfactory MIC values against different test bacteria. In addition, the biofilm inhibition and antiquorum sensing activities of NPs were also examined. The present study presents a novel approach for the relative analysis of metal-based NPs in antimicrobial studies, demonstrating their potential for bacteria removal from water and wastewater.
Collapse
Affiliation(s)
- Bindia Junejo
- National Centre of Excellence in Analytical Chemistry, University of Sindh Jamshoro, Sindh 76080, Pakistan
| | - Mujde Eryilmaz
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Ankara University, Ankara 06100, Turkey
| | - Suna Sibel Rizvanoglu
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Ankara University, Ankara 06100, Turkey
| | - Ismail Murat Palabiyik
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara 06100, Turkey
| | - Tania Ghumro
- National Centre of Excellence in Analytical Chemistry, University of Sindh Jamshoro, Sindh 76080, Pakistan
| | - Arfana Mallah
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway; M. A. Kazi Institute of Chemistry, University of Sindh, Jamshoro 76080, Pakistan
| | - Amber R Solangi
- National Centre of Excellence in Analytical Chemistry, University of Sindh Jamshoro, Sindh 76080, Pakistan
| | - Syed Iqleem Hyder
- Department of Chemistry, Government College University, Hyderabad, Sindh, Pakistan
| | - Hassan Karimi Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave., Chengdu, China
| | - Elena Niculina Dragoi
- Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, 'Gheorghe Asachi' Technical University, Bld D. Mangeron no. 73, Iasi 700050, Romania E-mail:
| |
Collapse
|
13
|
Khalil Abad MH, Nadaf M, Taghavizadeh Yazdi ME. Biosynthesis of ZnO.Ag 2O 3 using aqueous extract of Haplophyllum obtusifolium: Characterization and cell toxicity activity against liver carcinoma cells. MICRO & NANO LETTERS 2023; 18. [DOI: 10.1049/mna2.12170] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/13/2023] [Indexed: 01/03/2025]
Abstract
AbstractThe zinc oxide‐silver oxide nanocomposite (ZnO.Ag2O3 particles) was prepared by using an aqueous plant extract of Haplophyllum obtusifolium for the first time. Powder X‐ray diffraction (PXRD), Fourier transforms spectroscopy (FTIR), field emission microscopy (FESEM), energy dispersive X‐ray analysis (EDX), and transmission electron microscopy (TEM) were applied to analyze the structure, functional groups, morphology, and purity of the prepared nanocomposite. PXRD revealed the formulation of ZnO.Ag2O3 for the particles. The investigation of functional groups has demonstrated the presence of some carbonated impurities along with absorbed water in the composition of the ZnO.Ag2O3 nanocomposite. Morphologically, particles have formed a petal‐like shape with different sizes. The EDX analysis also confirmed the composition of the prepared sample and the presence of 4.78% silver in the formula. Additionally, the TEM analysis revealed spherical and rectangular shapes with a particle size of 80.43 ± 46.73 nm. Moreover, the ZnO.Ag2O3 particles were used against cancer cells, which has shown synthesized NCs have a toxic effect against liver cancer cells in a concentration and time‐dependent manner.
Collapse
Affiliation(s)
| | - Mohabat Nadaf
- Department of Biology Payame Noor University Tehran Iran
| | | |
Collapse
|
14
|
Nasef SM, Khozemy EE, Mahmoud GA. pH-responsive chitosan/acrylamide/gold/nanocomposite supported with silver nanoparticles for controlled release of anticancer drug. Sci Rep 2023; 13:7818. [PMID: 37188828 DOI: 10.1038/s41598-023-34870-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/09/2023] [Indexed: 05/17/2023] Open
Abstract
In this study, we prepared a pH-responsive nanocomposite hydrogel based on chitosan grafted with acrylamide monomer and gold nanoparticles using gamma irradiation method (Cs-g-PAAm/AuNPs). The nanocomposite was enhanced with a layer coating of silver nanoparticles to improve the controlled release of the anticancer drug fluorouracil while increasing antimicrobial activity and decreasing the cytotoxicity of silver nanoparticles in nanocomposite hydrogel by combining with gold nanoparticles to enhance the ability to kill a high number of liver cancer cells. The structure of the nanocomposite materials was studied using FTIR spectroscopy and XRD patterns, which demonstrated the entrapment of gold and silver nanoparticles within the prepared polymer matrix. Dynamic light scattering data revealed the presence of gold and silver in the nanoscale with the polydispersity indexes in the mid-range values, indicating that distribution systems work best. Swelling experiments at various pH levels revealed that the prepared Cs-g-PAAm/Au-Ag-NPs nanocomposite hydrogels were highly responsive to pH changes. Bimetallic pH-responsive Cs-g-PAAm/Au-Ag-NPs nanocomposites exhibit strong antimicrobial activity. The presence of AuNPs reduced the cytotoxicity of AgNPs while increasing their ability to kill a high number of liver cancer cells.Cs-g-PAAm/Au-Ag-NPs has a high amount of fluorouracil drug loaded at pH 7.4 reaching 95 mg/g with a maximum drug release of 97% within 300 min. Cs-g-PAAm/Au-Ag-NPs have been recommended to use as oral delivery of anticancer drugs because they secure the encapsulated drug in the acidic medium of the stomach and release it in the intestinal pH.
Collapse
Affiliation(s)
- Shaimaa M Nasef
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Ehab E Khozemy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Ghada A Mahmoud
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
15
|
Ghalkhani M, Teymourinia H, Ebrahimi F, Irannejad N, Karimi-Maleh H, Karaman C, Karimi F, Dragoi EN, Lichtfouse E, Singh J. Engineering and application of polysaccharides and proteins-based nanobiocatalysts in the recovery of toxic metals, phosphorous, and ammonia from wastewater: A review. Int J Biol Macromol 2023; 242:124585. [PMID: 37105252 DOI: 10.1016/j.ijbiomac.2023.124585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
Global waste production is anticipated reach to 2.59 billion tons in 2030, thus accentuating issues of environmental pollution and health security. 37 % of waste is landfilled, 33 % is discharged or burned in open areas, and only 13.5 % is recycled, which makes waste management poorly efficient in the context of the circular economy. There is therefore a need for methods to recycle waste into valuable materials through resource recovery process. Progress in the field of recycling is strongly dependent on the development of efficient, stable, and reusable, yet inexpensive catalysts. In this case, a growing attention has been paid to development and application of nanobiocatalysts with promising features. The main purpose of this review paper is to: (i) introduce nanobiomaterials and describe their effective role in the preparation of functional nanobiocatalysts for the recourse recovery aims; (ii) provide production methods and the efficiency improvement of nanobaiocatalysts; (iii) give comprehensive description of valued resource recovery for reducing toxic chemicals from the contaminated environment; (iv) describe various technologies for the valued resource recovery; (v) state the limitation of the valued resource recovery; (vi) and finally economic importance and current scenario of nanobiocatalysts strategies applicable for the resource recovery processes.
Collapse
Affiliation(s)
- Masoumeh Ghalkhani
- Electrochemical Sensors Research Laboratory, Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, Iran.
| | | | - Fatemeh Ebrahimi
- Thin Layer and Nanotechnology Laboratory, Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Neda Irannejad
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan 9477177870, Iran; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India.
| | - Ceren Karaman
- Department of Electricity and Energy, Vocational School of Technical Sciences, Akdeniz University, Antalya 07070, Turkey; School of Engineering, Lebanese American University, Byblos, Lebanon
| | - Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan 9477177870, Iran
| | - Elena Niculina Dragoi
- "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University, Bld. D. Mangeron no 73, 700050, Iasi, Romania
| | - Eric Lichtfouse
- Tate Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China.
| | - Jagpreet Singh
- Department of Chemical Engineering, University Centre for Research & Development, Chandigarh University, Mohali 140413, Punjab, India
| |
Collapse
|
16
|
Wang X, Tarahomi M, Sheibani R, Xia C, Wang W. Progresses in lignin, cellulose, starch, chitosan, chitin, alginate, and gum/carbon nanotube (nano)composites for environmental applications: A review. Int J Biol Macromol 2023; 241:124472. [PMID: 37076069 DOI: 10.1016/j.ijbiomac.2023.124472] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Water sources are becoming increasingly scarce, and they are contaminated by industrial, residential, and agricultural waste-derived organic and inorganic contaminants. These contaminants may pollute the air, water, and soil in addition to invading the ecosystem. Because carbon nanotubes (CNTs) can undergo surface modification, they can combine with other substances to create nanocomposites (NCs), including biopolymers, metal nanoparticles, proteins, and metal oxides. Furthermore, biopolymers are significant classes of organic materials that are widely used for various applications. They have drawn attention due to their benefits such as environmental friendliness, availability, biocompatibility, safety, etc. As a result, the synthesis of a composite made of CNT and biopolymers can be very effective for a variety of applications, especially those involving the environment. In this review, we reported environmental applications (including removal of dyes, nitro compounds, hazardous materialsو toxic ions, etc.) of composites made of CNT and biopolymers such as lignin, cellulose, starch, chitosan, chitin, alginate, and gum. Also, the effect of different factors such as the medium pH, the pollutant concentration, temperature, and contact time on the adsorption capacity (AC) and the catalytic activity of the composite in the reduction or degradation of various pollutants has been systematically explained.
Collapse
Affiliation(s)
- Xuan Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Mehrasa Tarahomi
- Amirkabir University of Technology-Mahshahr Campus, University St., Nahiyeh San'ati, Mahshahr, Khouzestan, Iran
| | - Reza Sheibani
- Amirkabir University of Technology-Mahshahr Campus, University St., Nahiyeh San'ati, Mahshahr, Khouzestan, Iran.
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Weidong Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
17
|
Chen X, Xu J, Ji B, Fang X, Jin K, Qian J. The role of nanotechnology-based approaches for clinical infectious diseases and public health. Front Bioeng Biotechnol 2023; 11:1146252. [PMID: 37077227 PMCID: PMC10106617 DOI: 10.3389/fbioe.2023.1146252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Given the high incidence of infection and the growing resistance of bacterial and viral infections to the traditional antiseptic, the need for novel antiseptics is critical. Therefore, novel approaches are urgently required to reduce the activity of bacterial and viral infections. Nanotechnology is increasingly being exploited for medical purposes and is of significant interest in eliminating or limiting the activity of various pathogens. Due to the increased surface-to-volume ratio of a given mass of particles, the antimicrobial properties of some naturally occurring antibacterial materials, such as zinc and silver, increase as particle size decreases into the nanometer regime. However, the physical structure of a nanoparticle and the way it interacts with and penetrates the bacteria also appear to provide unique bactericidal mechanisms. To measure the efficacy of nanoparticles (diameter 100 nm) as antimicrobial agents, it is necessary to comprehend the range of approaches for evaluating the viability of bacteria; each of them has its advantages and disadvantages. The nanotechnology-based disinfectants and sensors for SARS-CoV-2 provide a roadmap for creating more effective sensors and disinfectants for detecting and preventing coronaviruses and other infections. Moreover, there is an increasing role of nanotechnology-based approaches in various infections, including wound healing and related infection, nosocomial infections, and various bacterial infections. To meet the demand for patient care, nanotechnology-based disinfectants need to be further advanced with optimum approaches. Herein, we review the current burden of infectious diseases with a focus on SARS-CoV-2 and bacterial infection that significantly burdens developed healthcare systems and small healthcare communities. We then highlight how nanotechnology could aid in improving existing treatment modalities and diagnosis of those infectious agents. Finally, we conclude the current development and future perspective of nanotechnology for combating infectious diseases. The overall goal is to update healthcare providers on the existing role and future of nanotechnology in tackling those common infectious diseases.
Collapse
|
18
|
Dağlıoğlu Y, Öztürk BY, Khatami M. Apoptotic, cytotoxic, antioxidant, and antibacterial activities of biosynthesized silver nanoparticles from nettle leaf. Microsc Res Tech 2023; 86:669-685. [PMID: 36883432 DOI: 10.1002/jemt.24306] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/23/2022] [Accepted: 02/03/2023] [Indexed: 03/09/2023]
Abstract
Here, we reported the biosynthesis of silver nanoparticles (AgNPs) using Urtica dioica (nettle) leaf extract as green reducing and capping agents and investigate their anticancer and antibacterial, activity. The Nettle-mediated biosynthesized AgNPs was characterized by UV-Vis a spectrophotometer. Their size, shape and elemental analysis were determined with the using of SEM and TEM. The crystal structure was determined by XRD and the biomolecules responsible for the reduction of Ag+ were determined using FTIR analysis. Nettle-mediated biosynthesis AgNPs indicated strong antibacterial activity against pathogenic microorganisms. Again, the antioxidant activity of AgNPs is quite high when compared to ascorbic acid. Anticancer effect of AgNPs, IC50 dose was determined by XTT analysis using MCF-7 cell line and the IC50 value was found to be 0.243 ± 0.014 μg/mL (% w/v).
Collapse
Affiliation(s)
- Yeşim Dağlıoğlu
- Molecular Biology and Genetics, Department, Ordu University, Ordu, Turkey
| | - Betül Yılmaz Öztürk
- Central Research Laboratory Application and Research Center, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Mehrdad Khatami
- Department of Environment of Kerman, The Environmental Researches Center, Kerman, Iran
| |
Collapse
|
19
|
Baran T, Karaoğlu K, Nasrollahzadeh M. Nano-sized and microporous palladium catalyst supported on modified chitosan/cigarette butt composite for treatment of environmental contaminants. ENVIRONMENTAL RESEARCH 2023; 220:115153. [PMID: 36574802 DOI: 10.1016/j.envres.2022.115153] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/10/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
This study reports a versatile process for the fabrication of a microporous heterogeneous palladium nanocatalyst on a novel spherical, biodegradable, and chemically/physically resistant catalyst support consisting of chitosan (CS) and cigarette waste-derived activated carbon (CAC). The physicochemical properties of the microporous Pd-CS-CAC nanocatalyst developed were successfully determined by FTIR, XRD, FE-SEM, TEM, BET, and EDS techniques. TEM studies showed that the average particle size of the synthesized Pd NPs was about 30 nm. The catalytic prowess of microporous Pd-CS-CAC was evaluated in the reduction/decolorization of various nitroarenes (2-nitroaniline (2-NA), 4-nitroaniline (4-NA), 4-nitrophenol (4-NP), and 4-nitro-o-phenylenediamine (4-NPD)) and organic dyes (methyl red (MR), methyl orange (MO), methylene blue (MB), congo red (CR), and rhodamine B (RhB)) in an aqueous medium in the presence of NaBH4 as the reducing agent at room temperature. The catalytic activities were studied by UV-Vis absorption spectroscopy of the supernatant at regular time intervals. The short reaction times, mild reaction conditions, high efficiency (100% conversion), easy separation, and excellent chemical stability of the catalyst due to its heterogeneity and reusability are the advantages of this method. The results of the tests showed that reduction/decolorization reactions were successfully carried out within 10-140 s due to the good catalytic ability of Pd-CS-CAC. Moreover, Pd-CS-CAC was reused for 5 consecutive times with no loss of the initial shape, size, and morphology, confirming that it was a sustainable and robust nanocatalyst.
Collapse
Affiliation(s)
- Talat Baran
- Department of Chemistry, Faculty of Science and Letters, Aksaray University, 68100, Aksaray, Turkey
| | - Kaan Karaoğlu
- Department of Chemistry and Chemical Processing Technologies, Vocational School of Technical Sciences, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Mahmoud Nasrollahzadeh
- Department of Chemistry, Faculty of Science, University of Qom, Qom, 37185-359, Iran; Max Bergmann Center of Biomaterials, Institute of Materials Science, Technische Universität Dresden, 01069, Dresden, Germany.
| |
Collapse
|
20
|
P S V, V T K. A Comprehensive study on Photocatalytic, Antimicrobial, Antioxidant and Cytotoxicity effects of biosynthesized pure and Ni doped CuO nanoparticles. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
21
|
Karimi F, Elhouda Tiri RN, Aygun A, Gulbagca F, Özdemir S, Gonca S, Gur T, Sen F. One-step synthesized biogenic nanoparticles using Linum usitatissimum: Application of sun-light photocatalytic, biological activity and electrochemical H 2O 2 sensor. ENVIRONMENTAL RESEARCH 2023; 218:114757. [PMID: 36511326 DOI: 10.1016/j.envres.2022.114757] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/29/2022] [Accepted: 11/05/2022] [Indexed: 06/17/2023]
Abstract
This study aimed to synthesize Ag NPs as a green catalyst for photocatalytic activity and to examine their biological activities. It was determined that they have high activity in catalytic and biological activities. The green synthesis which is an environmentally friendly and inexpensive method was used to synthesize Ag-NPs using Linum usitatissimum as a reducing agent. Transmission electron microscopy (TEM), infrared to Fourier transform infrared (FTIR) spectroscopy, UV-Visible (UV-Vis) spectroscopy, and X-ray diffraction (XRD) were used to characterize the Ag NPs. In UV-Vis examination, Ag-NPs had intense peaks in the 435 nm region. The antibacterial activity of Ag NPs was investigated, and Ag NPs showed a high lethal effect against S. aureus, E. coli, B. subtilis, and MRSA. In addition, Ag NPs were tested for anticancer activity against the HT-29 colon cancer cell line, MDA-MB-231 breast cancer cell line, healthy cell line L929-Murine Fibroblast cell Lines, and MIA PaCa-2 human pancreatic cancer cell line at various concentrations (1-160 μg/mL) and showed a high anticancerogenic properties against MDA-MB-231 cells. Ag NPs showed the ability of DNA cleavage activity. Also, the antioxidant activity of Ag NPs against DPPH was found to be 80% approximately. Furthermore, the photocatalytic activity of Ag NPs against methylene blue (MB) was determined to be 67.13% at the 180th min. In addition, it was observed that biogenic Ag NPs have high electrocatalytic activity for hydrogen peroxide (H2O2) detection. In the sensor based on Ag NPs, linearity from 1 μM to 5 μM was observed with a detection limit (LOD) of 1.323 μM for H2O2. According to these results, we conclude that the biogenic Ag NPs synthesized using Linum usitatissimum extract can be developed as an efficient biological agent as an antibacterial and anticancer also can be used as a photocatalyst for industrial wastewater treatment to prevent wastewater pollution.
Collapse
Affiliation(s)
- Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Rima Nour Elhouda Tiri
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupinar University, Evliya Celebi Campus, 43100, Kutahya, Turkıye
| | - Aysenur Aygun
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupinar University, Evliya Celebi Campus, 43100, Kutahya, Turkıye
| | - Fulya Gulbagca
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupinar University, Evliya Celebi Campus, 43100, Kutahya, Turkıye
| | - Sadin Özdemir
- Food Processing Programme, Technical Science Vocational School, Mersin University, 33343, Yenisehir, Mersin, Turkıye
| | - Serpil Gonca
- Food Processing Programme, Technical Science Vocational School, Mersin University, 33343, Yenisehir, Mersin, Turkıye
| | - Tugba Gur
- Vocational School of Health Services, Van Yuzuncu Yil University, Van, Turkıye
| | - Fatih Sen
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupinar University, Evliya Celebi Campus, 43100, Kutahya, Turkıye.
| |
Collapse
|
22
|
Gomes Souza F, Pal K, Ampah JD, Dantas MC, Araújo A, Maranhão F, Domingues P. Biofuels and Nanocatalysts: Python Boosting Visualization of Similarities. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1175. [PMID: 36770184 PMCID: PMC9921263 DOI: 10.3390/ma16031175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Among the most relevant themes of modernity, using renewable resources to produce biofuels attracts several countries' attention, constituting a vital part of the global geopolitical chessboard since humanity's energy needs will grow faster and faster. Fortunately, advances in personal computing associated with free and open-source software production facilitate this work of prospecting and understanding complex scenarios. Thus, for the development of this work, the keywords "biofuel" and "nanocatalyst" were delivered to the Scopus database, which returned 1071 scientific articles. The titles and abstracts of these papers were saved in Research Information Systems (RIS) format and submitted to automatic analysis via the Visualization of Similarities Method implemented in VOSviewer 1.6.18 software. Then, the data extracted from the VOSviewer were processed by software written in Python, which allowed the use of the network data generated by the Visualization of Similarities Method. Thus, it was possible to establish the relationships for the pair between the nodes of all clusters classified by Link Strength Between Items or Terms (LSBI) or by year. Indeed, other associations should arouse particular interest in the readers. However, here, the option was for a numerical criterion. However, all data are freely available, and stakeholders can infer other specific connections directly. Therefore, this innovative approach allowed inferring that the most recent pairs of terms associate the need to produce biofuels from microorganisms' oils besides cerium oxide nanoparticles to improve the performance of fuel mixtures by reducing the emission of hydrocarbons (HC) and oxides of nitrogen (NOx).
Collapse
Affiliation(s)
- Fernando Gomes Souza
- Biopolymers & Sensors Lab, Instituto de Macromoléculas Professora Eloisa Mano, Centro de Tecnologia-Cidade Universitária, Universidade Federal de Rio de Janeiro, Rio de Janeiro 21941-914, RJ, Brazil
- Biopolymers & Sensors Lab, Programa de Engenharia da Nanotecnologia, COPPE, Centro de Tecnologia-Cidade Universitária, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-914, RJ, Brazil
| | - Kaushik Pal
- University Center for Research and Development (UCRD), Department of Physics, Chandigarh University, Ludhiana–Chandigarh State Hwy, Mohali 140413, Punjab, India
| | | | - Maria Clara Dantas
- Biopolymers & Sensors Lab, Programa de Engenharia da Nanotecnologia, COPPE, Centro de Tecnologia-Cidade Universitária, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-914, RJ, Brazil
| | - Aruzza Araújo
- LABPROBIO, Institute of Chemistry, Universidade Federal do Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Fabíola Maranhão
- Biopolymers & Sensors Lab, Instituto de Macromoléculas Professora Eloisa Mano, Centro de Tecnologia-Cidade Universitária, Universidade Federal de Rio de Janeiro, Rio de Janeiro 21941-914, RJ, Brazil
| | - Priscila Domingues
- Biopolymers & Sensors Lab, Programa de Engenharia da Nanotecnologia, COPPE, Centro de Tecnologia-Cidade Universitária, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-914, RJ, Brazil
| |
Collapse
|
23
|
Allami P, Heidari A, Rezaei N. The role of cell membrane-coated nanoparticles as a novel treatment approach in glioblastoma. Front Mol Biosci 2023; 9:1083645. [PMID: 36660431 PMCID: PMC9846545 DOI: 10.3389/fmolb.2022.1083645] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Abstract
Glioblastoma multiform (GBM) is the most prevalent and deadliest primary brain malignancy in adults, whose median survival rate does not exceed 15 months after diagnosis. The conventional treatment of GBM, including maximal safe surgery followed by chemotherapy and radiotherapy, usually cannot lead to notable improvements in the disease prognosis and the tumor always recurs. Many GBM characteristics make its treatment challenging. The most important ones are the impermeability of the blood-brain barrier (BBB), preventing chemotherapeutic drugs from reaching in adequate amounts to the tumor site, intratumoral heterogeneity, and roles of glioblastoma stem cells (GSCs). To overcome these barriers, the recently-developed drug-carrying approach using nanoparticles (NPs) may play a significant role. NPs are tiny particles, usually less than 100 nm showing various diagnostic and therapeutic medical applications. In this regard, cell membrane (CM)-coated NPs demonstrated several promising effects in GBM in pre-clinical studies. They benefit from fewer adverse effects due to their specific targeting of tumor cells, biocompatibility because of their CM surfaces, prolonged half-life, easy penetrating of the BBB, and escaping from the immune reaction, making them an attractive option for GBM treatment. To date, CM-coated NPs have been applied to enhance the effectiveness of major therapeutic approaches in GBM treatment, including chemotherapy, immunotherapy, gene therapy, and photo-based therapies. Despite the promising results in pre-clinical studies regarding the effectiveness of CM-coated NPs in GBM, significant barriers like high expenses, complex preparation processes, and unknown long-term effects still hinder its mass production for the clinic. In this regard, the current study aims to provide an overview of different characteristics of CM-coated NPs and comprehensively investigate their application as a novel treatment approach in GBM.
Collapse
Affiliation(s)
- Pantea Allami
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Heidari
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Hajipour M, Zamani HA, Karimi-Maleh H. Powerful and fast nanostructure electrochemical sensor for monitoring of carbidopa catechol-based drug in water and biological fluids. CHEMOSPHERE 2023; 312:137192. [PMID: 36368547 DOI: 10.1016/j.chemosphere.2022.137192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/26/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Herein, to monitor the concentration of carbidopa in an aqueous solution, an analytical approach based on electrode surface modification by Pt/SWCNTs as a sensor has been proposed. Pt/SWCNTs was synthesized by polyol strategy and characterized by the TEM method. Results confirmed spherical Pt nanoparticles with a diameter of about 10 nm decorated at the surface of SWCNTs with good distribution. The carbon paste electrode modified (CPEM) with Pt/SWCNTs was fabricated by mixing 12% of nanocomposite as an optimum condition with graphite powder in the presence of paraffin oil as a binder. Carbidopa's oxidation signal was enhanced by about 2.73 times when using the CPEM/Pt/SWCNTs, and its oxidation potential was decreased by about 110 mV. Additionally, the sensor demonstrated a linear dynamic range of 1.0 nM-120 M with a detection limit of 0.5 nM at pH = 7.0 as the ideal condition for monitoring carbidopa. Therefore, carbidopa in water and dextrose saline can be detected using CPEM/Pt/SWCNTs with an acceptable recovery range.
Collapse
Affiliation(s)
- Masoumeh Hajipour
- Department of Applied Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Hassan Ali Zamani
- Department of Applied Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Hassan Karimi-Maleh
- Department of Applied Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran; School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| |
Collapse
|
25
|
Binjawhar DN, Alsharari SS, Albalawi A, Abdulhasan MJ, Khat M, Ameen F. Facile green synthesis inorganic cuprous oxide nanoparticles and their antibacterial properties. MICRO & NANO LETTERS 2023; 18. [DOI: 10.1049/mna2.12154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Dalal Nasser Binjawhar
- Department of Chemistry, College of Science Princess Nourah bint Abdulrahman University Riyadh Saudi Arabia
| | - Salam S. Alsharari
- Biology Department, College of Science Jouf University Sakaka Saudi Arabia
| | - Aisha Albalawi
- Department of Biology, University College of Haql University of Tabuk Tabuk Saudi Arabia
| | - Maryam Jawad Abdulhasan
- Chemical Engineering and Petroleum Industries Department Al‐Mustaqbal University College Babylon Iraq
| | - Mehr Khat
- Antibacterial Materials R&D Centre China Metal New Materials (Huzhou) Institute Huzhou Zhejiang China
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science King Saud University Riyadh Saudi Arabia
| |
Collapse
|
26
|
Al-Enazi NM, Alsamhary K, Kha M, Ameen F. In vitro anticancer and antibacterial performance of biosynthesized Ag and Ce co-doped ZnO NPs. Bioprocess Biosyst Eng 2023; 46:89-103. [PMID: 36536225 PMCID: PMC9763817 DOI: 10.1007/s00449-022-02815-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/14/2022] [Indexed: 12/24/2022]
Abstract
The great potential of zinc oxide nanoparticles (ZnO NPs) for biomedical applications is attributed to their physicochemical properties. In this work, pure and Ag and Ce dual-doped ZnO NPs were synthesized through a facile and green route to examine their cytotoxicity in breast cancer and normal cells. The initial preparation of dual-doped nanoparticles was completed by the usage of taranjabin. The synthesis of Ag and Ce dual-doped ZnO NPs was started with preparing the Ce:Ag ratios of 1:1, 1:2, and 1:4. The cytotoxicity effects of synthesized nanoparticles against breast normal cells (MCF-10A) and breast cancer cells (MDA-MB-231) were examined. The hexagonal structure of synthesized nanoparticles was observed through the results of X-ray diffraction (XRD). Scanning electron microscopy (SEM) images exhibited the spherical shape and smooth surfaces of prepared particles along with the homogeneous distribution of Ag and Ce in ZnO with high-quality lattice fringes without any distortions. According to the cytotoxic results, the effects of Ag/Ce dual-doped ZnO NPs on breast cancer (MDA-MB-231) cells were significantly more than of pure ZnO NPs, while dual-doped and pure nanoparticles remained indifferent towards breast normal (MCF-10A) cells. In addition, we investigated the antimicrobial activity against harmful bacteria.
Collapse
Affiliation(s)
- Nouf M. Al-Enazi
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942 Saudi Arabia
| | - Khawla Alsamhary
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942 Saudi Arabia
| | - Mansour Kha
- Antibacterial Materials R&D Centre, China Metal New Materials (Huzhou) Institute, Huzhou, Zhejiang China
| | - Fuad Ameen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
| |
Collapse
|
27
|
Alhomaidi E, Faris P, Saja H, Jalil AT, Saleh MM, Khatami M. Soil-bacteria-mediated eco-friendly synthesis of ceramic nanostructure. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2022. [DOI: 10.1007/s12210-022-01117-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Barani M, Fathizadeh H, Arkaban H, Kalantar-Neyestanaki D, Akbarizadeh MR, Turki Jalil A, Akhavan-Sigari R. Recent Advances in Nanotechnology for the Management of Klebsiella pneumoniae-Related Infections. BIOSENSORS 2022; 12:1155. [PMID: 36551122 PMCID: PMC9776335 DOI: 10.3390/bios12121155] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Klebsiella pneumoniae is an important human pathogen that causes diseases such as urinary tract infections, pneumonia, bloodstream infections, bacteremia, and sepsis. The rise of multidrug-resistant strains has severely limited the available treatments for K. pneumoniae infections. On the other hand, K. pneumoniae activity (and related infections) urgently requires improved management strategies. A growing number of medical applications are using nanotechnology, which uses materials with atomic or molecular dimensions, to diagnose, eliminate, or reduce the activity of different infections. In this review, we start with the traditional treatment and detection method for K. pneumoniae and then concentrate on selected studies (2015-2022) that investigated the application of nanoparticles separately and in combination with other techniques against K. pneumoniae.
Collapse
Affiliation(s)
- Mahmood Barani
- Student Research Committee, Kerman University of Medical Sciences, Kerman 7616913555, Iran
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Hadis Fathizadeh
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan 7616916338, Iran
| | - Hassan Arkaban
- Department of Chemistry, University of Isfahan, Isfahan 8174673441, Iran
| | - Davood Kalantar-Neyestanaki
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Majid Reza Akbarizadeh
- Department of Pediatric, Amir Al Momenin Hospital, Zabol University of Medical Sciences, Zabol 9861663335, Iran
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla 51001, Iraq
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, 72076 Tuebingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University, 00014 Warsaw, Poland
| |
Collapse
|
29
|
M. Alahdal H, Ayad Abdullrezzaq S, Ibrahim M. Amin H, F. Alanazi S, Turki Jalil A, Khatami M, Mahmood Saleh M. Trace elements-based Auroshell gold@hematite nanostructure: Green synthesis and their hyperthermia therapy. IET Nanobiotechnol 2022; 17:22-31. [PMID: 36420828 PMCID: PMC9932437 DOI: 10.1049/nbt2.12107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/31/2022] [Accepted: 11/12/2022] [Indexed: 11/25/2022] Open
Abstract
Hyperthermia is an additional treatment method to radiation therapy/chemotherapy, which increases the survival rate of patients without side effects. Nowadays, Auroshell nanoparticles have attracted much attention due to their precise control over heat use for medical purposes. In this research, iron/gold Auroshell nanoparticles were synthesised using green nanotechnology approach. Auroshell gold@hematite nanoparticles were synthesised and characterised with rosemary extract in one step and the green synthesised nanoparticles were characterised by X-ray powder diffraction, SEM, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy analysis. Cytotoxicity of Auroshell iron@gold nanoparticles against normal HUVEC cells and glioblastoma cancer cells was evaluated by 2,5-diphenyl-2H-tetrazolium bromide method, water bath hyperthermia, and combined method of water bath hyperthermia and nano-therapy. Auroshell gold@hematite nanoparticles with minimal toxicity are safe against normal cells. The gold shell around the magnetic core of magnetite caused the environmental and cellular biocompatibility of these Auroshell nanoparticles. These magnetic nanoparticles with targeted control and transfer to the tumour tissue led to uniform heating of malignant tumours as the most efficient therapeutic agent.
Collapse
Affiliation(s)
- Hadil M. Alahdal
- Department of BiologyCollege of SciencePrincess Nourah bint Abdulrahman UniversityRiyadhSaudi Arabia
| | | | - Hawraz Ibrahim M. Amin
- Department of ChemistryCollege of ScienceSalahaddin University‐ErbilErbilIraq,Department of Medical Biochemical AnalysisCihan University‐ErbilErbilIraq
| | - Sitah F. Alanazi
- Department of PhysicsCollege of ScienceImam Mohammad Ibn Saud Islamic UniversityRiyadhSaudi Arabia
| | - Abduladheem Turki Jalil
- Department of Medical Laboratories TechniquesAl‐Mustaqbal University CollegeBabylon, HillaIraq
| | - Mehrdad Khatami
- Antibacterial Materials R&D CentreChina Metal New Materials (Huzhou) InstituteHuzhouZhejiangChina
| | - Marwan Mahmood Saleh
- Department of BiophysicsCollege of Applied SciencesUniversity of AnbarRamadiIraq,Medical Laboratory Technology DepartmentCollege of Medical TechnologyThe Islamic UniversityNajafIraq
| |
Collapse
|
30
|
Daneshnazar M, Jaleh B, Eslamipanah M, Varma RS. Optical and gas sensing properties of TiO2/RGO for methanol, ethanol and acetone vapors. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
31
|
Nasri A, Jaleh B, Shabanlou E, Nasrollahzadeh M, Ali Khonakdar H, Kruppke B. Ionic liquid-based (nano)catalysts for hydrogen generation and storage. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
32
|
Jasim SA, Amin HIM, Rajabizadeh A, Nobre MAL, Borhani F, Jalil AT, Saleh MM, Kadhim MM, Khatami M. Synthesis characterization of Zn-based MOF and their application in degradation of water contaminants. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:2303-2335. [PMID: 36378182 PMCID: wst_2022_318 DOI: 10.2166/wst.2022.318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Metal-organic frameworks (MOFs) are currently popular porous materials with research and application value in various fields such as medicine and engineering. Aiming at the application of MOFs in photocatalysis, this paper mainly reviews the main synthesis methods of ZnMOFs and the latest research progress of Zn MOF-based photocatalysts to degrade organic pollutants in water, such as organic dyes. This nanomaterial is being used to treat wastewater and has proven to be very efficient because of its exceptionally large surface area and porous nature. The results show that Zn-MOFs are capable of high degradation of the above pollutants and over 90% of degradation was observed in publications. In addition, the reusability percentage was examined and studies showed that the Zn-MOF nanostructure has very good stability and can continue to degrade a high percentage of pollutants after several cycles. This review focuses on Zn-MOFs and their composites. First, the methods of synthesis and characterization of these compounds are given. Finally, the application of these composites in the process of photocatalytic degradation of dye pollutants such as methylene blue, methyl orange, crystal violet, rhodamine B, etc. is explained.
Collapse
Affiliation(s)
- Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-Maarif University College, Al-Anbar-Ramadi, Iraq
| | - Hawraz Ibrahim M Amin
- Chemistry Department, Salahaddin University-Erbil, Erbil, Iraq; Department of Medical Biochemical Analysis, Cihan University-Erbil, Erbil, Iraq
| | - Ahmad Rajabizadeh
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Marcos Augusto Lima Nobre
- School of Technology and Sciences, São Paulo State University (Unesp), Presidente Prudente, SP 19060-900, Brazil
| | - Fariba Borhani
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran E-mail:
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla 51001, Iraq
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University of Anbar, Ramadi, Iraq; Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Mustafa M Kadhim
- Department of Medical Laboratory Techniques, Dijlah University College, Baghdad 10021, Iraq; Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad, Iraq
| | - Mehrdad Khatami
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
33
|
Mirzaiebadizi A, Ravan H, Dabiri S, Mohammadi P, Shahba A, Ziasistani M, Khatami M. An intelligent DNA nanorobot for detection of MiRNAs cancer biomarkers using molecular programming to fabricate a logic-responsive hybrid nanostructure. Bioprocess Biosyst Eng 2022; 45:1781-1797. [PMID: 36125526 DOI: 10.1007/s00449-022-02785-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022]
Abstract
Herein, we designed a DNA framework-based intelligent nanorobot using toehold-mediated strand displacement reaction-based molecular programming and logic gate operation for the selective and synchronous detection of miR21 and miR125b, which are known as significant cancer biomarkers. Moreover, to investigate the applicability of our design, DNA nanorobots were implemented as capping agents onto the pores of MSNs. These agents can develop a logic-responsive hybrid nanostructure capable of specific drug release in the presence of both targets. The prosperous synthesis steps were verified by FTIR, XRD, BET, UV-visible, FESEM-EDX mapping, and HRTEM analyses. Finally, the proper release of the drug in the presence of both target microRNAs was studied. This Hybrid DNA Nanostructure was designed with the possibility to respond to any target oligonucleotides with 22 nucleotides length.
Collapse
Affiliation(s)
- Amin Mirzaiebadizi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran.,Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Hadi Ravan
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Shahriar Dabiri
- Department of Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Pourya Mohammadi
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Arezoo Shahba
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mahsa Ziasistani
- Department of Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehrdad Khatami
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
34
|
Khalaj M, Zarandi M. A Cu(ii) complex supported on Fe 3O 4@SiO 2 as a magnetic heterogeneous catalyst for the reduction of environmental pollutants. RSC Adv 2022; 12:26527-26541. [PMID: 36275142 PMCID: PMC9486508 DOI: 10.1039/d2ra04787j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/03/2022] [Indexed: 11/21/2022] Open
Abstract
Today, the presence of pollutants in the environment has become one of the serious problems and concerns of human beings. To eliminate these pollutants, researchers have made many efforts. One of the most important of these efforts is the reduction of such contaminants in the presence of effective catalysts. Two of the most important and widespread types of these pollutants are nitro compounds and organic dyes. In this paper, we report the synthesis of an efficient and reusable magnetic catalyst using Fe3O4@SiO2 core-shell nanoparticles (NPs), N-(4-bromophenyl)-N'-benzoylthiourea, and copper(ii). Specifically, the Cu(ii)-N-(4-bromophenyl)-N'-benzoylthiourea complex supported on Fe3O4-core magnetic NPs (CM)/SiO2-shell (SS) (CM@SS-BBTU-Cu(ii)) has been prepared. CM@SS-BBTU-Cu(ii) was characterized by FT-IR (Fourier transform infrared spectroscopy), XRD (X-ray diffraction), TEM (transmission electron microscopy), HRTEM (high resolution transmission electron microscopy), FFT (fast Fourier transform), VSM (vibrating sample magnetometry), TG-DTA (thermogravimetry-differential thermal analysis), STEM (scanning transmission electron microscopy), EDS (energy-dispersive X-ray spectroscopy), and elemental mapping. The synthesized CM@SS-BBTU-Cu(ii) was applied for the reduction of 4-nitrophenol (4-NP), Congo red (CR), and methylene blue (MB) in the presence of NaBH4 (sodium borohydride) at room temperature. CM@SS-BBTU-Cu(ii) can be recycled and reused 5 times. Our results displayed that the performance of the catalyst was not significantly reduced by recycling.
Collapse
Affiliation(s)
- Mehdi Khalaj
- Department of Chemistry, Islamic Azad University Buinzahra Branch Buinzahra Iran +98 2834226118 +98 2834226112
| | - Maryam Zarandi
- Department of Chemistry, Islamic Azad University Buinzahra Branch Buinzahra Iran +98 2834226118 +98 2834226112
| |
Collapse
|
35
|
Alhomaidi E, Jasim SA, Amin HIM, Lima Nobre MA, Khatami M, Jalil AT, Hussain Dilfy S. Biosynthesis of silver nanoparticles using Lawsonia inermis and their biomedical application. IET Nanobiotechnol 2022; 16:284-294. [PMID: 36039655 PMCID: PMC9469786 DOI: 10.1049/nbt2.12096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/28/2022] [Accepted: 08/17/2022] [Indexed: 11/19/2022] Open
Abstract
Developing biosynthesis of silver nanoparticles (Ag‐NPs) using plant extract is an environmentally friendly method to reduce the use of harmful chemical substances. The green synthesis of Ag‐NPs by Lawsonia inermis extract and its cellular toxicity and the antimicrobial effect was studied. The physical and chemical properties of synthesised Ag‐NPs were investigated using UV‐visible spectroscopy, infrared spectroscopy, X‐ray diffraction (XRD), scanning, and transmission electron microscopy. The average size of Ag‐NPs was 40 nm. The XRD result shows peaks at 2θ = 38.07°, 44.26°, 64.43°, and 77.35° are related to the FCC structure of Ag‐NPs. Cytotoxicity of synthesised nanoparticles was evaluated by MTT toxicity test on breast cancer MCF7 cell line. Observations showed that the effect of cytotoxicity of nanoparticles on the studied cell line depended on concentration and time. The obtained IC50 was considered for cells at a dose of 250 μg/ml. Growth and survival rates decreased exponentially with the dose. Antimicrobial properties of Ag‐NPs synthesised with extract were investigated against Escherichia coli, Salmonella typhimurium, Bacillus cereus, and Staphylococcus aureus to calculate the minimum inhibitory concentration and the minimum bactericidal concentration of (MBC). The results showed that the synthesised Ag‐NPs and the plant extract have antimicrobial properties. The lowest concentration of Ag‐NPs that can inhibit the growth of bacterial strains was 25 μg/ml.
Collapse
Affiliation(s)
- Eman Alhomaidi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Saade Abdalkareem Jasim
- Al-Maarif University College, Medical Laboratory Techniques Department, Al-Anbar-Ramadi, Iraq
| | - Hawraz Ibrahim M Amin
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil, Iraq.,Department of Medical Biochemical Analysis, Cihan University-Erbil, Erbil, Iraq
| | - Marcos Augusto Lima Nobre
- São Paulo State University (Unesp), School of Technology and Sciences, Presidente Prudente, Sao Paulo, Brazil
| | - Mehrdad Khatami
- Antibacterial Materials R&D Centre, China Metal New Materials (Huzhou) Institute, Huzhou, Zhejiang, China
| | - Abduladheem Turki Jalil
- Department of Medical Laboratories Techniques, Al-Mustaqbal University College, Babylon, Iraq
| | - Saja Hussain Dilfy
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq.,Department of Biology, College of Education for Pure Science, Wasit University, Iraq
| |
Collapse
|
36
|
The Recent Advances of Metal–Organic Frameworks in Electric Vehicle Batteries. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02467-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Mortezagholi B, Movahed E, Fathi A, Soleimani M, Forutan Mirhosseini A, Zeini N, Khatami M, Naderifar M, Abedi Kiasari B, Zareanshahraki M. Plant-mediated synthesis of silver-doped zinc oxide nanoparticles and evaluation of their antimicrobial activity against bacteria cause tooth decay. Microsc Res Tech 2022; 85:3553-3564. [PMID: 35983930 DOI: 10.1002/jemt.24207] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/12/2022] [Accepted: 07/07/2022] [Indexed: 12/22/2022]
Abstract
In this research, silver-doped zinc oxide (SdZnO) nanoparticles (NPs) were synthesized in an environmental-friendly manner. The synthesized NPs were identified by UV-vis spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM). Finally, the antimicrobial activity of synthesized ZnO and SdZnO NPs was performed. It was observed that by doping silver, the size of ZnO NPs was changed. By adding silver to ZnO NPs, the antimicrobial effect of ZnO NPs was improved. Antibacterial test against gram-positive bacterium Streptococcus mutants showed that SdZnO NPs with a low density of silver had higher antibacterial activity than ZnO NPs; Therefore, SdZnO NPs can be used as a new antibacterial agent in medical applications.
Collapse
Affiliation(s)
- Bardia Mortezagholi
- Dental Materials Research Center, Dental School, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Emad Movahed
- Dental Materials Research Center, Dental School, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Amirhossein Fathi
- Department of Prosthodontics, Dental Materials Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Milad Soleimani
- Department of Orthodontics, School of Dentistry, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Negar Zeini
- Department of Oral and Maxillofacial Radiology, School Dentistry Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mehrdad Khatami
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Bahman Abedi Kiasari
- Virology Department, Faculty of Veterinary Medicine, The University of Tehran, Tehran, Iran
| | - Mehran Zareanshahraki
- School of Dentistry, Islamic Azad Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
38
|
Nezafat Z, Karimkhani MM, Nasrollahzadeh M, Javanshir S, Jamshidi A, Orooji Y, Jang HW, Shokouhimehr M. Facile synthesis of Cu NPs@Fe 3O 4-lignosulfonate: Study of catalytic and antibacterial/antioxidant activities. Food Chem Toxicol 2022; 168:113310. [PMID: 35931246 DOI: 10.1016/j.fct.2022.113310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/07/2022] [Accepted: 07/14/2022] [Indexed: 10/16/2022]
Abstract
Environmental pollution is one of the important concerns for human health. There are different types of pollutants and techniques to eliminate them from the environment. We hereby report an efficient method for the remediation of environmental contaminants through the catalytic reduction of the selected pollutants. A green method has been developed for the immobilization of copper nanoparticles on magnetic lignosulfonate (Cu NPs@Fe3O4-LS) using the aqueous extract of Filago arvensis L. as a non-toxic reducing and stabilizing agent. The characterization of the prepared Cu NPs@Fe3O4-LS was achieved by vibrating sample magnetometer (VSM), Fourier-transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), high resolution TEM (HRTEM), X-ray diffraction (XRD), scanning TEM (STEM), thermogravimetry-differential thermal analysis (TG/DTA), fast Fourier transform (FFT), energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron (XPS) analyses. The synthesized Cu NPs@Fe3O4-LS was applied as a magnetic and green catalyst in the reduction of Congo Red (CR), 4-nitrophenol (4-NP), and methylene blue (MB). The progress of the reduction reactions was monitored by UV-Vis spectroscopy. Finally, the biological properties of the Cu NPs@Fe3O4-LS were investigated. The prepared catalyst demonstrated excellent catalytic efficiency in the reduction of CR, 4-NP, and MB in the presence of sodium borohydride (NaBH4) as the reducing agent. The appropriate magnetism of Cu NPs@Fe3O4-LS made its recovery very simple. The advantages of this process include a simple reaction set-up, high and catalytic antibacterial/antioxidant activities, short reaction time, environmentally friendliness, high stability, and easy separation of the catalyst. In addition, the prepared Cu NPs@Fe3O4-LS could be reused for four cycles with no significant decline in performance.
Collapse
Affiliation(s)
- Zahra Nezafat
- Pharmaceutical and Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mohammad Mahdi Karimkhani
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Shahrzad Javanshir
- Pharmaceutical and Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Abdollah Jamshidi
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Mohammadreza Shokouhimehr
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
39
|
Sadegh F, Tavakol H. Synthesis of Ag/CoFe2O4 magnetic aerogel for catalytic reduction of nitroaromatics. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|