1
|
Zhang Y, Liu Y, Wei Y, Jiang Y, Gao Y, Liu C, Zhao G, Liu R, Wang H, Li X, Liu H, Yu Z, Shi G, Wang G. Preparation of Multistage Pore TS-1 with Enhanced Photocatalytic Activity, Including Process Studies and Artificial Neural Network Modeling for Synergy Assessment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:19441-19457. [PMID: 39238335 DOI: 10.1021/acs.langmuir.4c01732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Antibiotic residues have been found in several aquatic ecosystems as a result of the widespread use of antibiotics in recent years, which poses a major risk to both human health and the environment. At present, photocatalytic degradation is the most effective and environmentally friendly method. Titanium silicon molecular sieve (TS-1) has been widely used as an industrial catalyst, but its photocatalytic application in wastewater treatment is limited due to its small pores and few active sites. In this paper, we report a method for preparing multistage porous TS-1 with a high specific surface area by alkali treatment. In the photocatalytic removal of CIP (ciprofloxacin) antibiotic wastewater experiments, the alkali-treated catalyst showed better performance in terms of interfacial charge transfer efficiency, which was 2.3 times higher than that of TS-1 synthesized by the conventional method, and it was found to maintain better catalytic performance in the actual water source. In addition, this research studied the effects of solution pH, contaminant concentration, and catalyst dosage on CIP degradation, while liquid chromatography-mass spectrometry (LC-MS) was used to identify intermediates in the degradation process and infer possible degradation pathways and the toxicity of CIP, and its degradation product was also analyzed using ECOSAR 2.2 software, and most of the intermediates were found to be nontoxic and nonharmful. Finally, a 3:5:1 artificial neural network model was established based on the experiments, and the relative importance of the influence of experimental conditions on the degradation rate was determined. The above results confirmed the feasibility and applicability of photocatalytic treatment of wastewater containing antibiotics using visible light excitation alkali post-treatment TS-1, which provided technical support and a theoretical basis for the photocatalytic treatment of wastewater containing antibiotics.
Collapse
Affiliation(s)
- Yulan Zhang
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Yubing Liu
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Yuan Wei
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Yanyan Jiang
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Yuhui Gao
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Chao Liu
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Guanghong Zhao
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Ronghui Liu
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Hongyu Wang
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Xin Li
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Huaide Liu
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Ziyan Yu
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Gaofeng Shi
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Guoying Wang
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
- Hexi University, Zhangye 734000, Gansu, China
| |
Collapse
|
2
|
Panda L, Pradhan A, Subudhi E, Sahoo RK, Nanda B. Ag-loaded BiFeO 3/CuS heterostructured based composite: an efficient photocatalyst for removal of antibiotics and antibacterial activities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:5540-5554. [PMID: 38127232 DOI: 10.1007/s11356-023-31523-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023]
Abstract
The performance of advanced materials in environmental applications using green energy is the tremendous interest among researchers. The visible light responsive BiFeO3 (BFO), BiFeO3/CuS (BFOC), and Ag-loaded BiFeO3/CuS (Ag-BFOC) heterostructures have been synthesized by reflux method followed by hydrothermal and wetness impregnation method. These synthesized composites are well characterized through X-ray diffraction, UV diffuse reflectance spectroscopy, scanning electron microscope, and Fourier transfer infrared spectroscopy techniques. Compared with BFO and BFOC, Ag-BFOC exhibits the highest photocatalytic performance towards the degradation of antibiotics ciprofloxacin (76%) within 120-min time and also showed better antibacterial performance towards gram-negative (Escherichia coli, Klebsiella pneumoniae, and Acinetobacter baumannii) bacteria. Moreover, the novelty of the present work is the addition of CuS on the surface of BiFeO3 from heterojunction type II and facilitates the electron-hole channelization at the interfaces between BiFeO3 and CuS. Again, the loading of Ag on BiFeO3/CuS helps in shifting the absorption band towards the red end, is eligible to absorb more sunlight due to surface plasmon resonance effect, improves the separation efficiency of photo-generated charge carriers, and enhances the photocatalytic degradation of ciprofloxacin. The antibacterial property of Ag gives a best result towards antimicrobial activity. The prepared composites have proved their durability and stability by four successive cycles and prove the versatility of the composite.
Collapse
Affiliation(s)
- Lipsa Panda
- Department of Chemistry, Faculty of Engineering and Technology (ITER), Siksha 'O' Anusandhan (Deemed to Be) University, Bhubaneswar, 751030, Odisha, India
| | - Abanti Pradhan
- Department of Chemistry, Faculty of Engineering and Technology (ITER), Siksha 'O' Anusandhan (Deemed to Be) University, Bhubaneswar, 751030, Odisha, India
| | - Enketeswara Subudhi
- Department of Biotechnology, Center of Biotechnology, Siksha 'O' Anusandhan (Deemed to Be) University, Bhubaneswar, 751030, Odisha, India
| | - Rajesh Kumar Sahoo
- Department of Biotechnology, Center of Biotechnology, Siksha 'O' Anusandhan (Deemed to Be) University, Bhubaneswar, 751030, Odisha, India
| | - Binita Nanda
- Department of Chemistry, Faculty of Engineering and Technology (ITER), Siksha 'O' Anusandhan (Deemed to Be) University, Bhubaneswar, 751030, Odisha, India.
| |
Collapse
|
3
|
Abdelraouf H, Zhou F, Li Y, Ren J, Zhao G, Zhao Q, Wei J, Zhai X, Ding J. Enhanced generation of oxysulfur radicals by the BiOBr/Montmorillonite activated sulfite system: Performance and mechanism. ENVIRONMENTAL RESEARCH 2023; 239:117339. [PMID: 37832773 DOI: 10.1016/j.envres.2023.117339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/11/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023]
Abstract
The easily synthesized, cost-effective, and stable photocatalysts for sulfite activation are always required for the enhancement of organic contaminants degradation. Herein, the facile coprecipitation synthesis of Bismuth oxybromide (BiOBr)/Montmorillonite (MMT) was reported, which could activate sulfite (SO32-/HSO3-) under sunlight and accelerate the catalytic performance more effectively than pristine BiOBr. After adding sulfite to the photocatalysis system, the photodegradation efficiency of atrazine (ATZ) achieved 73.7% ± 1.5% after 5 min and 94.4% ± 1.6% after 30 min of sunlight irradiation with BiOBr/MMT. The BiOBr/MMT-sulfite system also presented remarkable photocatalytic performance to eliminate various contaminants, including ciprofloxacin, sulfadiazine, tetracycline, and carbamazepine. The various features of the photocatalyst materials were studied, including their surface morphology, structure, optical properties, and composition. The results illustrated that by adding MMT, the bandgap of the pristine BiOBr was reduced and the surface area was increased, which led to an increased ability to adsorb materials. Results of various influence factors showed this enhanced system had satisfactory and stable removal performance of ATZ in the pH range of 3.0-6.5, but HPO42- had a strong negative effect on the system performance. Oxysulfur radicals (SO5·- and SO4·-), h+, and 1O2 were discovered as the prevailing active species in the BiOBr/MMT-sulfite system. The proposed degradation mechanism of this photocatalyst-enhanced system revealed that sulfite adsorption on the surface of the photocatalyst played a vital role during the initial phase, and the degradation pathway of ATZ was discussed. This study provides a new synthesis strategy of a photocatalyst for sulfite activation and expands the potential uses of Bi-based photocatalysts in degrading difficult-to-remove organic pollutants.
Collapse
Affiliation(s)
- Hussein Abdelraouf
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Civil Engineering Department, Benha Faculty of Engineering, Benha University, Benha, Egypt
| | - Fanyang Zhou
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yulong Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jiayi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guanshu Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jian Wei
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Xuedong Zhai
- Harbin Institute of Technology Water Resources National Engineering Research Center Co., Ltd, Harbin 150090, China
| | - Jing Ding
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
4
|
Song Y, Long A, Ge X, Bao Z, Meng M, Hu S, Gu Y. Construction of floatable flower-like plasmonic Bi/BiOCl-loaded hollow kapok fiber photocatalyst for efficient degradation of RhB and antibiotics. CHEMOSPHERE 2023; 343:140240. [PMID: 37739132 DOI: 10.1016/j.chemosphere.2023.140240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023]
Abstract
The development of low-cost and high-efficiency photocatalysts for the degradation of organic pollutants has been an essential and feasible approach to environmental remediation. However, conventional powder photocatalysts suffer from agglomeration, limited light utilization, and reuse difficulties, which hinder their large-scale practical application. Herein, a floatable flower-like plasmonic Bi/BiOCl-loaded hollow kapok fiber (KF/Bi/BC) photocatalyst was synthesized by a facile solvothermal method. It exhibited excellent photocatalytic degradation of Rhodamine B (RhB), ofloxacin (OFX), and tetracycline (TC) under UV-vis irradiation. The incorporation of metallic Bi not only greatly enhanced the light absorption of BiOCl in the visible region but also served as an effective "electron trap", facilitating the efficient separation and transfer of photogenerated electrons and holes. Furthermore, the remarkable floatability of the catalyst contributed to increased light utilization and facilitated the recycling of the catalyst. This work provided a convenient, effective, and feasible method for the fabrication of floatable photocatalysts with excellent catalytic properties, and has great potential for practical applications.
Collapse
Affiliation(s)
- Yankai Song
- School of Materials and Chemistry. University of Shanghai for Science and Technology, Address: No. 516, Jungong Road, Shanghai, 200093, PR China
| | - Anchun Long
- School of Materials and Chemistry. University of Shanghai for Science and Technology, Address: No. 516, Jungong Road, Shanghai, 200093, PR China
| | - Xianlong Ge
- School of Materials and Chemistry. University of Shanghai for Science and Technology, Address: No. 516, Jungong Road, Shanghai, 200093, PR China
| | - Zongqi Bao
- School of Materials and Chemistry. University of Shanghai for Science and Technology, Address: No. 516, Jungong Road, Shanghai, 200093, PR China
| | - Minfeng Meng
- School of Materials and Chemistry. University of Shanghai for Science and Technology, Address: No. 516, Jungong Road, Shanghai, 200093, PR China
| | - Shaohua Hu
- School of Materials and Chemistry. University of Shanghai for Science and Technology, Address: No. 516, Jungong Road, Shanghai, 200093, PR China
| | - Yingying Gu
- School of Materials and Chemistry. University of Shanghai for Science and Technology, Address: No. 516, Jungong Road, Shanghai, 200093, PR China.
| |
Collapse
|
5
|
Zhao C, Zhao Z, Liang Y, Fu J. Bi/BiOI/carbon quantum dots nano-sheets with superior photocatalysis. RSC Adv 2023; 13:30520-30527. [PMID: 37854493 PMCID: PMC10580261 DOI: 10.1039/d3ra05145e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/07/2023] [Indexed: 10/20/2023] Open
Abstract
A new photocatalyst of Bi/BiOI/Carbon quantum dots (CQDs) was synthesized via a simple method. Photocatalytic performance of Bi/BiOI/CQDs was evaluated by photodegradation of RhB. Experiment indicated that the introduction of CQDs could improve the photocatalysis activity of BiOI obviously. Moreover, there is a optimum percentage of CQDs. In this photocatalytic system, the enhanced photoactivity was mainly attributed to the heterojunction interface between CQDs and BiOI, as well as the enhanced light harvesting for the appropriate CQDs introduction. The radicals trapping experiments revealed that O2˙-, ˙OH and h+ were the main active species during the photocatalysis process.
Collapse
Affiliation(s)
- Chenhui Zhao
- School of Power and Energy, Northwestern Polytechnical University Xi'an 710072 China
| | - Zhijie Zhao
- School of Power and Energy, Northwestern Polytechnical University Xi'an 710072 China
| | - Ying Liang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an 710072 China
| | - Jiangfeng Fu
- School of Power and Energy, Northwestern Polytechnical University Xi'an 710072 China
| |
Collapse
|
6
|
Ma J, Jin X, Yang M, Zhao X, Ding S, Wang B, Li X. Fabrication of 2D/1D Bi 2WO 6/halloysite nanotubes photocatalyst towards water purification: a support effect on in situconstruction and electron-hole separation. NANOTECHNOLOGY 2023; 34:475701. [PMID: 37591213 DOI: 10.1088/1361-6528/acf139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/16/2023] [Indexed: 08/19/2023]
Abstract
In this research work, a reusable and efficient 2D/1D heterogeneous structured photocatalyst based on amine-functionalized halloysite nanotubes (MHNTs) and Bi2WO6nanosheet (BWO) was prepared using a facile hydrothermal method for decomposing PPCPs under simulated sunlight. On the degradation of tetracycline hydrochloride (TCH), the effects of composite catalysts prepared under various conditions were discussed. The results showed that over BWO/MHNTs with a mass ratio was 3:1, the synthesizing temperature was 120 °C and the precursor pH value was 1, the TCH (10 mg l-1) degradation efficiency reached 100% after 1 h irradiation of simulated sunlight. Moreover, BWO/MHNTs composites kept good recovery and stable photocatalytic activity after 5 cycles. The excellent dispersion of Bi2WO6on the surface of clay minerals and the oxygen vacancy enhanced electron-hole separation may be responsible for the its high activity and stability. Futhermore, the radical capture test demonstrated that ·O-2was primarily responsible for the photodegradation of TCH. Thus, BWO/MHNTs composites exhibit a good application prospect in the field of sunlight-driven photocatalytic degradation towards PPCPs pollutants in water.
Collapse
Affiliation(s)
- Jiayu Ma
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, People's Republic of China
| | - Xu Jin
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, People's Republic of China
| | - Mengjuan Yang
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, People's Republic of China
| | - Ximeng Zhao
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, People's Republic of China
| | - Shanshan Ding
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, People's Republic of China
| | - Bin Wang
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, People's Republic of China
- Beijing Key Laboratory of Clothing Materials R and D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, Beijing Institute of Fashion Technology, Beijing 100029, People's Republic of China
| | - Xiuyan Li
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
7
|
Makowski D, Lisowski W, Baluk MA, Klimczuk T, Bajorowicz B. Design and Synthesis of NTU-9/C 3N 4 Photocatalysts: Effects of NTU-9 Content and Composite Preparation Method. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5007. [PMID: 37512281 PMCID: PMC10385252 DOI: 10.3390/ma16145007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
Hybrid materials based on graphitic carbon nitride (g-C3N4) and NTU-9 metal-organic frameworks (MOF) were designed and prepared via solvothermal synthesis and calcination in air. The as-prepared photocatalysts were subsequently characterized using Brunauer-Emmett-Teller (BET) analysis, UV-Vis diffuse reflectance spectroscopy (DRS), photoluminescence (PL) emission spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The obtained NTU-9/C3N4 composites showed a greatly improved photocatalytic performance for the degradation of toluene in the gas phase under LED visible-light irradiation (λmax = 415 nm). The physicochemical properties and photocatalytic activities of the obtained NTU-9/C3N4 materials were tuned by varying the NTU-9 content (5-15 wt%) and preparation method of the composite materials. For composites prepared by calcination, the photocatalytic activity increased with decreasing NTU-9 content as a result of the formation of TiO2 from the MOFs. The best photocatalytic performance (65% of toluene was photodegraded after 60 min) was achieved by the NTU-9/C3N4 sample prepared via the solvothermal method and containing 15 wt% MOF, which can be attributed to the appropriate amount and stable combination of composite components, efficient charge separation, and enhanced visible-light absorption ability. The photocatalytic mechanisms of the prepared hybrid materials depending on the preparation method are also discussed.
Collapse
Affiliation(s)
- Damian Makowski
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
| | - Wojciech Lisowski
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Mateusz A Baluk
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
| | - Tomasz Klimczuk
- Department of Solid State Physics, Faculty of Applied Physics and Mathematics, Gdansk University of Technology, 80-233 Gdansk, Poland
| | - Beata Bajorowicz
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
| |
Collapse
|
8
|
Zhu J, Wang H, Duan A, Wang Y. Mechanistic insight into the degradation of ciprofloxacin in water by hydroxyl radicals. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130676. [PMID: 36580772 DOI: 10.1016/j.jhazmat.2022.130676] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/24/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Ciprofloxacin (CIP), an effective antibacterial drug, is widely used to treat bacterial infections in humans and animals. However, drug pollution from residues and the development of resistant genes may pose serious ecological risks. Among the known methods of CIP degradation, advanced oxidation technology initiated by hydroxyl radicals exhibits great potential. However, an in-depth study of the degradation mechanism is difficult because of the limitations of the testing methods. In this study, CIP oxidation by hydroxyl radicals was evaluated using density functional theory (DFT), and the thermodynamics, kinetics, and toxicity were investigated. The results show that CIP oxidation occurs mainly through the piperazine ring, benzene ring, and CC. High reactivity is achieved in the initial reactions, where only five reactions are not thermodynamically spontaneous. Reactions involving direct hydrogen abstraction by oxygen in this system are superior to the indirect reactions. Some theoretically predicted products, such as P6 and P11, are consistent with those reported in previous experiments, indicating that the theoretical study can provide supplementary information about the oxidation paths. The branching ratios for the hydrogen atom abstraction and addition reactions were 37. 45% and 62.55%, respectively. Finally, this reaction system is completely nontoxic based on toxicity assessment.
Collapse
Affiliation(s)
- Jianfeng Zhu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hongwu Wang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Shanghai 200092, China.
| | - Abing Duan
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China; College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yanqiong Wang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
9
|
Deng Z, Huang Z, Liu J, Huang Y, Lu P. Efficient Activation of Peroxymonosulfate by V-Doped Graphitic Carbon Nitride for Organic Contamination Remediation. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8936. [PMID: 36556741 PMCID: PMC9785673 DOI: 10.3390/ma15248936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Advanced oxidation processes (AOPs) based on peroxymonosulfate (PMS) activation have been developed as an ideal pathway for completely eradication of recalcitrant organic pollutants from water environment. Herein, the V-doped graphitic carbon nitride (g-C3N4) is rationally fabricated by one-step thermal polymerization method to activate PMS for contamination decontamination. The results demonstrate the V atoms are successfully integrated into the framework of g-C3N4, which can effectively improve light absorption intensity and enhance charge separation. The V-doped g-C3N4 displays superior catalytic performance for PMS activation. Moreover, the doping content has a great influence on the activation performances. The radical quenching experiments confirm •O2-, SO4•-, and h+ are the significant species in the catalytic reaction. This work would provide a feasible strategy to exploit efficient g-C3N4-based material for PMS activation.
Collapse
Affiliation(s)
- Zhi Deng
- Key Laboratory of Shale Gas Exploration, Ministry of Natural Resources, Chongqing Institute of Geology and Mineral Resources, Chongqing 401120, China
| | - Zhenhua Huang
- Key Laboratory of Shale Gas Exploration, Ministry of Natural Resources, Chongqing Institute of Geology and Mineral Resources, Chongqing 401120, China
| | - Jun Liu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Yongkui Huang
- Key Laboratory of Shale Gas Exploration, Ministry of Natural Resources, Chongqing Institute of Geology and Mineral Resources, Chongqing 401120, China
| | - Peili Lu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| |
Collapse
|