1
|
Wang X, Liu B, Liu Z, Li J, Lu R, Gao H, Pan C, Zhou W. Promising adsorbent for dye detoxification: Exploring the potential of chitosan sodium carboxymethylcellulose silk fibroin aerogel. Int J Biol Macromol 2024; 260:129127. [PMID: 38219947 DOI: 10.1016/j.ijbiomac.2023.129127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/08/2023] [Accepted: 12/27/2023] [Indexed: 01/16/2024]
Abstract
The main goal of this study is to create a CS-CMC-SF aerogel consisting of chitosan sodium carboxymethylcellulose and silk fibroin. The aerogel is designed to remove types of dyes from water while also being environmentally friendly. This innovative adsorbent has been optimized for extracting both cationic and anionic dyes from solutions. It incorporates chitosan sodium carboxymethylcellulose and silk filament fibers to enhance its strength. Experimental data illustrates that the CS-CMC-SF aerogel possesses remarkable adsorption capabilities - 5461.77 mg/g for Congo Red (CR), 2392.83 mg/g for Malachite Green (MG), and 1262.20 mg/g for Crystal Violet (CV). A kinetic study aligns with the pseudo-second-order kinetic model suggesting predominant chemisorption phenomena occur during adsorption process. Isotherm analysis further identifies multilayered adsorption occurring on irregularly shaped surfaces of the aerogel while thermodynamic assessments validate exothermic and spontaneous characteristics inherent in its absorption mechanism. Several analytical methods such as SEM, FT-IR, XRD, and XPS were employed to examine physicochemical attributes tied to this unique material design conceptually; identifying mechanisms including pore filling, π-π interactions, ion exchange activity, electrostatic connections along with hydrogen bonding inducing overall superior performance output. Furthermore substantial soil biodegradability alongside compostable features associated with our proposed CS-CMC-SF aerogels established it's potential suitability within applications demanding sustainable options thereby validating its underlying ecological credibility.
Collapse
Affiliation(s)
- Xiaojun Wang
- Department of Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China
| | - Binbin Liu
- Department of Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China
| | - Zhili Liu
- Department of Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China
| | - Jing Li
- Department of Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China
| | - Runhua Lu
- Department of Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China
| | - Haixiang Gao
- Department of Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China
| | - Canping Pan
- Department of Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China
| | - Wenfeng Zhou
- Department of Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China.
| |
Collapse
|
2
|
García R, Rodríguez E, Díez MA, Arenillas A, Villanueva SF, Rey-Raap N, Cuesta C, López-Antón MA, Martínez-Tarazona MR. Synthesis of Micro- and Mesoporous Carbon Foams with Nanodispersed Metals for Adsorption and Catalysis Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1336. [PMID: 36836966 PMCID: PMC9963879 DOI: 10.3390/ma16041336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
This work focuses on carbon foams, whose peculiarity is a predominant open macroporous cellular network that can be provided with tailored texture and morphology by the modification of the preparation process. The goal was to obtain macroporous carbonaceous structures capable of being activated by following a simple thermo-foaming procedure using a few reagents. With this purpose in mind, carbon foams with different textural properties were synthesized from sucrose using two foaming processes: at atmospheric pressure and in a pressurized reactor. Iron and silver nitrates added to sucrose gave rise, after carbonization, to materials with iron oxides and elemental silver particles nano-dispersed in the carbon matrix and promoted microporosity in both cases and mesoporosity in the case of iron nitrate. Iron nitrate also catalyzes the graphitization of the carbon material during carbonization. All these findings show the potential of sucrose thermo-foaming process as a viable and sustainable path to produce versatile carbon materials, capable of being used in various applications.
Collapse
|