1
|
Hu Z, Su G, Long S, Zhang X, Zhang L, Chen Y, Zhang C, Liu G. Synthesis of X@DRHC (X=Co, Ni, Mn) catalyst from comprehensive utilization of waste rice husk and spent lithium-ion batteries for efficient peroxymonosulfate (PMS) activation. ENVIRONMENTAL RESEARCH 2024; 245:118078. [PMID: 38159665 DOI: 10.1016/j.envres.2023.118078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Highly efficient resource recycling and comprehensive utilization play a crucial role in achieving the goal of reducing resource wasting, environmental protection, and achieving goal of sustainable development. In this work, the two kinds waste resources of agricultural rice husk and metal ions (Co, Ni, and Mn) from spent lithium-ion batteries have been skillfully utilized to synthesize novel Fenton-like catalysts. Desiliconized rice husk carbon (DRHC) with rich pore structure and large specific surface area from rice husk has been prepared and used as scalable carrier, and dandelion-like nanoparticles cluster could be grown in situ on the surface of the carrier by using metal ions contained waste water. The designed catalysts (X@DRHC) as well as their preparation process were characterized in detail by SEM, TEM, BET, XRD and XPS, respectively. Meanwhile, their catalytic abilities were also studied by activating potassium peroxomonosulfate (PMS) to remove methylene blue (MB). The results indicate X@DRHC displays excellent degradation efficiency on MB with wide pH range and stable reusability, which is suitable for the degradation of various dyes. This work has realized the recycling and high-value utilization of waste resources from biomass and spent lithium-ion batteries, which not only creates an efficient way to dispose waste resources, but also shows high economic benefits in large-scale water treatment.
Collapse
Affiliation(s)
- Zhenyi Hu
- Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China.
| | - Geng Su
- Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China.
| | - Shujun Long
- Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China.
| | - Xiaoting Zhang
- Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China.
| | - Linkun Zhang
- Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China.
| | - Yilin Chen
- Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China.
| | - Chang Zhang
- Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China.
| | - Gonggang Liu
- Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China.
| |
Collapse
|
2
|
Jitjamnong J, Khongprom P, Ratanawilai T, Ratanawilai S. Glycerol carbonate synthesis via transesterification of enriched glycerol and dimethyl carbonate using a Li-incorporated MCM-41 framework. RSC Adv 2024; 14:5941-5958. [PMID: 38375007 PMCID: PMC10875607 DOI: 10.1039/d4ra00290c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/30/2024] [Indexed: 02/21/2024] Open
Abstract
Waste crude glycerol was successfully enriched and utilized as an inexpensive source for producing value-added chemicals, such as glycerol carbonate (GC) - a valuable compound with extensive industrial applications. The Li/MCM-41 heterogeneous catalyst was synthesized and used for the transesterification of enriched glycerol and dimethyl carbonate (DMC) to produce GC. The catalyst's physicochemical properties were characterized using thermogravimetric, Hammett indicator, inductively coupled plasma-optical emission spectroscopy, nitrogen adsorption-desorption, X-ray diffractometry, scanning electron microscopy, and Fourier-transform infrared spectroscopy analyses. Reaction conditions were optimized using response surface methodology and analysis of variance, yielding an accurate quadratic model to predict the GC yield under different transesterification variables. The results revealed that 5%Li/MCM-41 served as the optimal catalyst, achieving the highest TOF of 4.72 h-1. The DMC: enriched glycerol molar ratio had the greatest impact on the GC yield, with an R2 = 0.9743 and adjusted R2 = 0.9502. The optimal GC yield (58.77%) with a final purity of 78% was attained at a 5.15 wt% catalyst loading relative to the initial amount of enriched glycerol, DMC: enriched glycerol molar ratio of 4.24 : 1, and a reaction temperature of 86 °C for 165 min. The 5%Li/MCM-41 heterogeneous catalyst could be reused for four cycles with a decreased GC yield from 58.77% to 45.72%. Thus, the Li/MCM-41 catalyst demonstrated a remarkable efficiency and potential as a heterogeneous catalyst for synthesizing GC. This method not only contributes to environmental sustainability by making use of a byproduct from biodiesel production but also aligns with the principles of a circular economy.
Collapse
Affiliation(s)
- Jakkrapong Jitjamnong
- Department of Chemical Engineering, Faculty of Engineering, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Parinya Khongprom
- Department of Chemical Engineering, Faculty of Engineering, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
- Air Pollution and Health Effect Research Center, Prince of Songkla University Songkhla 90110 Thailand
| | - Thanate Ratanawilai
- Department of Industrial and Manufacturing Engineering, Faculty of Engineering, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Sukritthira Ratanawilai
- Department of Chemical Engineering, Faculty of Engineering, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| |
Collapse
|
3
|
Narayanan M, Ma Y, Al Obaid S, Alfarraj S, Duc PA, Karuppusamy I. Eichhornia crassipes biochar aided pollutants sorption competence of multi-metal tolerant fungi species on South Pennar river. ENVIRONMENTAL RESEARCH 2023; 231:116152. [PMID: 37224949 DOI: 10.1016/j.envres.2023.116152] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/26/2023]
Abstract
The number of studies about the use of efficient techniques to treat contaminated water bodies has increased in recent years. The use of bioremediation method for the reduction of contaminants from aqueous system is receiving a lot of attention. Thus, this study was designed to assess the Eichhornia crassipes biochar amended pollutants sorption competence of multi-metal tolerant Aspergillus flavus on South Pennar River. The physicochemical characteristics declared that the, half of the parameters (turbidity, TDS, BOD, COD, Ca, Mg, Fe, free NH3, Cl-, and F-) of South Pennar River were beyond the permissible limits. Furthermore, the lab-scale bioremediation investigation with different treatment groups (group I, II, and III) revealed that the group III (E. crassipes biochar and A. flavus mycelial biomass) showed considerable remediation efficiency on South Pennar River water in 10 days of treatment. The metals adsorbed on the surface of E. crassipes biochar and A. flavus mycelial biomass was also affirmed by SEM analysis. Hence such findings, E. crassipes biochar amended A. flavus mycelial biomass could be a sustainable method of remediating contaminated South Pennar River water.
Collapse
Affiliation(s)
- Mathiyazhagan Narayanan
- Division of Research and Innovations, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602 105, Tamil Nadu, India
| | - Ying Ma
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Sami Al Obaid
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Saleh Alfarraj
- Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Pham Anh Duc
- Faculty of Safety Engineering, School of Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Indira Karuppusamy
- Emerging Materials for Energy and Environmental Applications Research Group, School of Technology, Van Lang University, Ho Chi Minh City, Viet Nam; Faculty of Environment, School of Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
4
|
Wu Y, Xia C, Zhang L, Thanh NC, Al Obaid S, Alfarraj S, Jhanani GK. Organic gelatin-coated ZnNPs for the production of biodegradable biopolymer films. ENVIRONMENTAL RESEARCH 2023; 231:116059. [PMID: 37149019 DOI: 10.1016/j.envres.2023.116059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
Petroleum-based polymers have raised significant environmental concerns. It is critical to create compostable, good biocompatibility, and nontoxic polymers to replace petroleum-based polymers. Thus, this research was performed to extract the gelatin from fish waste cartilage and coated it over the surface of spherical shaped pre-synthesized ZnNPs along with a suitable plasticizer to produce the biodegradable film. The presence of gelatin on the surface of ZnNPs was first confirmed using UV-visible spectrophotometers, as well as the characteristic functional groups involved in the coating were investigated using Fourier-Transform Infrared Spectroscopy (FTIR). The morphological appearance of gelatin coated ZnNPs was ranged from 41.43 to 52.31 nm, the shape was found as platonic to pentagonal shape, and the fabricated film was observed through Scanning Electron Microscope (SEM). The thickness, density, and tensile strength of fabricated film were found to be 0.04-0.10 mm, 0.10-0.27 g/cm3, and 31.7 kPa. These results imply that the fish waste cartilage gelatin coated ZnNPs-based nanocomposite can be used for film preparation as well as a wrapper for food and pharmaceutical packaging.
Collapse
Affiliation(s)
- Yingji Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials, Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials, Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Li Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research, Institute, Nanjing Forestry University, Nanjing, 210037, China
| | - Nguyen Chi Thanh
- Faculty of Applied Sciences, Ho Chi Minh City University of Technology and Education, Ho Chi Minh City, 700000, Viet Nam
| | - Sami Al Obaid
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Saleh Alfarraj
- Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - G K Jhanani
- University Centre for Research & Development, Chandigarh University, Mohali, 140103, India.
| |
Collapse
|