1
|
Wang L, Xiang L, Wang X, Liu T, Chen H, Li D, Jian C, Guo W, Xiao Z, He Y. Utilization patterns strongly dominated the dynamics of CO 2 and CH 4 emissions from small artificial lakes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123613. [PMID: 39662434 DOI: 10.1016/j.jenvman.2024.123613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/21/2024] [Accepted: 12/01/2024] [Indexed: 12/13/2024]
Abstract
Small lakes are significant sources of CO2 and CH4 emissions to atmosphere. The dynamics and controls of CO2 and CH4 emissions from human-dominated small lakes with diverse functions remain poorly understood. We investigated the spatiotemporal dynamics of CO2 and CH4 concentrations and fluxes in 33 small lakes around the urban area with different landscape properties and utilization patterns, to clarify the impact of human-dominated functional shift on their greenhouse gas emissions. Meanwhile, we used microcosm cultivation methods to assess the CO2 and CH4 production rates of sediments in these lakes. The results indicated that the utilization ways significantly influence the CO2 and CH4 emissions in these lakes, with urban landscape lakes and aquaculture lakes showing significantly higher emissions compared to irrigation water-supplying lakes and drinking-water lakes. Extensive urbanization and aquaculture practices could increase the risk of that small lakes turn into hotspots of CO2 and CH4 emissions, and further complicate their spatial heterogeneity. Meanwhile, the production potential of CO2 and CH4 in sediments, as well as gas fluxes in small lakes, exhibited consistent functional differentiation across different utilization patterns. They were mainly driven by changes in sediment organic carbon and microbial carbon. Additionally, the difference of organic carbon and nitrogen loads were another drives for the variability in CO2 and CH4 emissions. We highlighted that the continuous accumulation of nutrient loads in water and sediments in human-dominated small lakes has greatly enhanced the potential for carbon gas emissions. We also found that utilization ways can significantly affect the key controls of CO2 and CH4 emission from small lakes, and also influence the reliability of carbon emission prediction models based on water chemistry parameters. To accurately estimate the contribution of small lakes to the global greenhouse gas inventory, it is essential to establish adaptive predictive models that consider the uncertainties in lake carbon emissions resulting from human utilization patterns.
Collapse
Affiliation(s)
- Lijun Wang
- Chongqing Key Laboratory of Carbon Cycle and Carbon Regulation of Mountain Ecosystem, Chongqing Normal University, Chongqing, 401331, China; Chongqing Field Observation and Research Station of Earth Surface Ecological Process in the Three Gorges Reservoir Area, Chongqing Normal University, Chongqing, 405400, China; School of Geography and Tourism, Chongqing Normal University, Chongqing, 401331, China
| | - Lingyi Xiang
- Chongqing Field Observation and Research Station of Earth Surface Ecological Process in the Three Gorges Reservoir Area, Chongqing Normal University, Chongqing, 405400, China; Chongqing Huadi Resources and Environmental Science and Technology Co., LTD, Chongqing, 400000, China
| | - Xiaofeng Wang
- Chongqing Key Laboratory of Carbon Cycle and Carbon Regulation of Mountain Ecosystem, Chongqing Normal University, Chongqing, 401331, China; Chongqing Field Observation and Research Station of Earth Surface Ecological Process in the Three Gorges Reservoir Area, Chongqing Normal University, Chongqing, 405400, China; School of Geography and Tourism, Chongqing Normal University, Chongqing, 401331, China.
| | - Tingting Liu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Honglin Chen
- Chongqing Key Laboratory of Carbon Cycle and Carbon Regulation of Mountain Ecosystem, Chongqing Normal University, Chongqing, 401331, China; Chongqing Field Observation and Research Station of Earth Surface Ecological Process in the Three Gorges Reservoir Area, Chongqing Normal University, Chongqing, 405400, China; School of Geography and Tourism, Chongqing Normal University, Chongqing, 401331, China
| | - Dongfeng Li
- Chongqing Key Laboratory of Carbon Cycle and Carbon Regulation of Mountain Ecosystem, Chongqing Normal University, Chongqing, 401331, China; Chongqing Field Observation and Research Station of Earth Surface Ecological Process in the Three Gorges Reservoir Area, Chongqing Normal University, Chongqing, 405400, China; School of Geography and Tourism, Chongqing Normal University, Chongqing, 401331, China
| | - Chen Jian
- Chongqing Key Laboratory of Carbon Cycle and Carbon Regulation of Mountain Ecosystem, Chongqing Normal University, Chongqing, 401331, China; Chongqing Field Observation and Research Station of Earth Surface Ecological Process in the Three Gorges Reservoir Area, Chongqing Normal University, Chongqing, 405400, China; School of Geography and Tourism, Chongqing Normal University, Chongqing, 401331, China
| | - Wentao Guo
- Chongqing Key Laboratory of Carbon Cycle and Carbon Regulation of Mountain Ecosystem, Chongqing Normal University, Chongqing, 401331, China; Chongqing Field Observation and Research Station of Earth Surface Ecological Process in the Three Gorges Reservoir Area, Chongqing Normal University, Chongqing, 405400, China; School of Geography and Tourism, Chongqing Normal University, Chongqing, 401331, China
| | - Zuolin Xiao
- Chongqing Key Laboratory of Carbon Cycle and Carbon Regulation of Mountain Ecosystem, Chongqing Normal University, Chongqing, 401331, China; Chongqing Field Observation and Research Station of Earth Surface Ecological Process in the Three Gorges Reservoir Area, Chongqing Normal University, Chongqing, 405400, China; School of Geography and Tourism, Chongqing Normal University, Chongqing, 401331, China
| | - Yixin He
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
2
|
Zhou C, Xu X, Peng Y, Wang G, Liu H, Jin Q, Jia R, Ma J, Kinouchi T, Wang G. Response of sulfate concentration to eutrophication on spatio-temporal scale in freshwater lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176142. [PMID: 39255939 DOI: 10.1016/j.scitotenv.2024.176142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/30/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
The dramatical increase of sulfur concentration in eutrophic lakes, especially sulfate (SO42-), has brought attention to the impact on the lake ecosystem; however, the mechanisms driving the intensification of eutrophication and the role of SO₄2- concentrations remain poorly understood. To assess the impact of eutrophication on SO42- dynamics in lakes, this study monitored SO42- concentrations in water and sediments across seven lakes with varying trophic statuses on a spatial scale, and in the eutrophic Lake Taihu over one year on a temporal scale, as well as a series of microcosms with different initial SO42- concentrations. Exogenous sulfur input is the primary driver of increased SO42- concentrations in lakes, the highest SO42- concentration in overlying water was 100 mg/L, as well as which reached 310.9 mg/L in sediment. The concurrent input of nutrients such as nitrogen and phosphorus exacerbated eutrophication, resulting in the destabilization of the sulfur cycle. Eutrophication promoted the SO42- concentration on the spatio-temporal scale, especially in sediment, and trophic lake index (TLI) showed a positive correlation with the SO42- in sediments (R2 = 0.99; 0.88). The SO42- concentration in water and TLI showed a nonlinear correlation on the temporal scale (R2 = 0.44), and showed a positive correlation on the spatial scale (R2 = 0.49). Microscopic experiments demonstrate that the anaerobic environment created by cyanobacteria decomposition induced sulfate reduction and significantly reduces SO42- concentrations. Concurrently, the anaerobic environment facilitates the coupling of iron reduction with sulfate reduction, leading to a substantial increase in Acid Volatile Sulfides (AVS) in the sediment. These findings reveal that eutrophication has a dual effect on the dynamic change of SO42- concentrations in overlying water, which is helpful to accurately evaluate and predict the change of SO42- concentrations in lakes.
Collapse
Affiliation(s)
- Chuanqiao Zhou
- Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Xiaoguang Xu
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Yu Peng
- Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Guanshun Wang
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Huazu Liu
- Department of Urban and Environmental Engineering, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Qiu Jin
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Ruoyu Jia
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Jie Ma
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210024, China.
| | - Tsuyoshi Kinouchi
- Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
3
|
Zhou C, Peng Y, Zhou M, Jia R, Liu H, Xu X, Chen L, Ma J, Kinouchi T, Wang G. Cyanobacteria decay alters CH 4 and CO 2 produced hotspots along vertical sediment profiles in eutrophic lakes. WATER RESEARCH 2024; 265:122319. [PMID: 39182350 DOI: 10.1016/j.watres.2024.122319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/18/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Cyanobacteria-derived organic carbon has been reported to intensify greenhouse gas emissions from lacustrine sediments. However, the specific processes of CH4 and CO2 production and release from sediments into the atmosphere remain unclear, especially in eutrophic lakes. To investigate the influence of severe cyanobacteria accumulation on the production and migration of sedimentary CH4 and CO2, this study examined the different trophic level lakes along the middle and lower reaches of the Yangtze River. The results demonstrated that eutrophication amplified CH4 and CO2 emissions, notably in Lake Taihu, where fluxes peaked at 929.9 and 7222.5 μmol/m2·h, mirroring dissolved gas levels in overlying waters. Increased sedimentary organic carbon raised dissolved CH4 and CO2 concentrations in pore-water, with isotopic tracking showing cyanobacteria-derived carbon specifically elevated CH4 and CO2 in surface sediment pore-water more than in deeper layers. Cyanobacteria-derived carbon deposition on surface sediment boosted organic carbon and moisture levels, fostering an anaerobic microenvironment conducive to enhanced biogenic CH4 and CO2 production in surface sediments. In the microcosm systems with the most severe cyanobacteria accumulation, average CH4 and CO2 concentrations in surface sediments reached 6.9 and 2.3 mol/L, respectively, surpassing the 4.7 and 1.4 mol/L observed in bottom sediments, indicating upward migration of CH4 and CO2 hotspots from deeper to surface layers. These findings enhance our understanding of the mechanisms underlying lake sediment carbon emissions induced by eutrophication and provide a more accurate assessment of lake carbon emissions.
Collapse
Affiliation(s)
- Chuanqiao Zhou
- School of Environment, Nanjing Normal University, 1, Wenyuan Road, Xianlin University District, Nanjing, 210023, China; Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Yu Peng
- School of Environment, Nanjing Normal University, 1, Wenyuan Road, Xianlin University District, Nanjing, 210023, China; Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Muchun Zhou
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
| | - Ruoyu Jia
- School of Environment, Nanjing Normal University, 1, Wenyuan Road, Xianlin University District, Nanjing, 210023, China
| | - Huazu Liu
- Department of Urban and Environmental Engineering, Graduate School of Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Xiaoguang Xu
- School of Environment, Nanjing Normal University, 1, Wenyuan Road, Xianlin University District, Nanjing, 210023, China.
| | - Li Chen
- State Key Laboratory of Environmental Aquatic Chemistry, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Ma
- Ministry of Ecology and Environment, Nanjing Institute of Environment Sciences, Nanjing, 210042, China
| | - Tsuyoshi Kinouchi
- Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, 1, Wenyuan Road, Xianlin University District, Nanjing, 210023, China
| |
Collapse
|
4
|
Zhou C, Zhou M, Peng Y, Xu X, Terada A, Wang G, Zhong H, Kinouchi T. Unexpected increase of sulfate concentrations and potential impact on CH 4 budgets in freshwater lakes. WATER RESEARCH 2024; 261:122018. [PMID: 38971077 DOI: 10.1016/j.watres.2024.122018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024]
Abstract
The continuous increase in sulfate (SO42-) concentrations discharged by anthropogenic activities lacks insights into their dynamics and potential impact on CH4 budgets in freshwater lakes. Here we conducted a field investigation in the lakes along the highly developed Yangtze River basin, China, additionally, we analyzed long-term data (1950-2020) from Lake Taihu, a typical eutrophic lake worldwide. We observed a gradual increase in SO42- concentrations up to 100 mg/L, which showed a positive correlation with the trophic state of the lakes. The annual variations indicated that eutrophication intensified the fluctuation of SO42- concentrations. A random forest model was applied to assess the impact of SO42- concentrations on CH4 emissions, revealing a significant negative effect. Synchronously, a series of microcosms with added SO42- were established to simulate cyanobacteria decomposition processes and explore the coupling mechanism between sulfate reduction and CH4 production. The results showed a strong negative correlation between CH4 concentrations and initial SO42- levels (R2 = 0.83), indicating that higher initial SO42- concentrations led to lower final CH4 concentrations. This was attributed to the competition for cyanobacteria-supplied substrates between sulfate reduction bacteria (SRB) and methane production archaea (MPA). Our study highlights the importance of considering the unexpectedly increasing SO42- concentrations in eutrophic lakes when estimating global CH4 emission budgets.
Collapse
Affiliation(s)
- Chuanqiao Zhou
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, 210023, China; Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Muchun Zhou
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, 210023, China; Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
| | - Yu Peng
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, 210023, China; Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Xiaoguang Xu
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, 210023, China.
| | - Akihiko Terada
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
| | - Guoxiang Wang
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, 210023, China
| | - Huan Zhong
- School of Environment, Nanjing University, Nanjing 210023, China
| | - Tsuyoshi Kinouchi
- Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| |
Collapse
|
5
|
Ma J, Zhou M, Peng Y, Tuo Y, Zhou C, Liu K, Huang Y, He F, Lai Q, Zhang Z, Kinouchi T, Li S, Xu X, Wu X, Lin X, Li W, Wang G. Instability in a carbon pool driven by multiple dissolved organic matter sources in a eutrophic lake basin: Potential factors for increased greenhouse gas emissions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 350:119697. [PMID: 38035504 DOI: 10.1016/j.jenvman.2023.119697] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
Lakes serve as vital reservoirs of dissolved organic matter (DOM) and play pivotal roles in biogeochemical carbon cycles. However, the sources and compositions of DOM in freshwater lakes and their potential effects on lake sediment carbon pools remain unclear. In this study, seven inflowing rivers in the Lake Taihu basin were selected to explore the potential effects of multi-source DOM inputs on the stability of the lake sediment carbon pool. The results showed the high concentrations of dissolved organic carbon in the Lake Taihu basin, accompanied by a high complexity level. Lignins constituted the majority of DOM compounds, surpassing 40% of the total, while the organic carbon content was predominantly composed of humic acids (1.02-3.01 g kg-1). The high amounts of lignin oxidative cleavage led to CHO being the main molecular structure in the DOM of the seven rivers. The carbon constituents within the sediment carbon reservoir exhibited a positive correlation with dissolved CH4 and CO2, with a notable emphasis on humic acid and dissolved CH4 (R2 = 0.86). The elevated concentration of DOM, coupled with its intricate composition, contributed to the increases in dissolved greenhouse gases (GHGs). Experiments showed that the mixing of multi-source DOM can accelerate the organic carbon mineralization processes. The unit carbon emission efficiency was highest in the mixed group, reaching reached 160.9 μmol∙Cg-1, which also exhibited a significantly different carbon pool. The mixed decomposition of DOM from different sources influenced the roles of the lake carbon pool as source and sink, indicating that the multi-source DOM of this lake basin was a potential driving factor for increased carbon emissions. These findings have improved our understanding of the sources and compositions of DOM in lake basins and revealed their impacts on carbon emissions, thereby providing a theoretical basis for improving assessments of lake carbon emissions.
Collapse
Affiliation(s)
- Jie Ma
- Ministry of Ecology and Environment, Nanjing Institute of Environment Sciences, Nanjing, 210042, China
| | - Muchun Zhou
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
| | - Yu Peng
- Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Ya Tuo
- Environmental Development Center of the Ministry of Ecology and Environment, Beijing, 100029, China
| | - Chuanqiao Zhou
- Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo, 152-8550, Japan.
| | - Kexin Liu
- Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Yilin Huang
- Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Fei He
- Ministry of Ecology and Environment, Nanjing Institute of Environment Sciences, Nanjing, 210042, China.
| | - Qiuying Lai
- Ministry of Ecology and Environment, Nanjing Institute of Environment Sciences, Nanjing, 210042, China
| | - Zhihui Zhang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Tsuyoshi Kinouchi
- Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Shuyin Li
- Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo, 152-8550, Japan; Yangtze River Basin Ecological Environment Monitoring and Scientific Research Center, Yangtze River Basin Ecological Environment Supervision and Administration Bureau, Ministry of Ecological Environment, Wuhan, 430010, China
| | - Xiaoguang Xu
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Xiaodong Wu
- College of Urban and Environmental Sciences, Hubei Normal University, Huangshi, 435002, China
| | - Xiaowen Lin
- College of Urban and Environmental Sciences, Hubei Normal University, Huangshi, 435002, China
| | - Weixin Li
- Ministry of Ecology and Environment, Nanjing Institute of Environment Sciences, Nanjing, 210042, China
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
6
|
Pérez G, Krause SMB, Bodelier PLE, Meima-Franke M, Pitombo L, Irisarri P. Interactions between Cyanobacteria and Methane Processing Microbes Mitigate Methane Emissions from Rice Soils. Microorganisms 2023; 11:2830. [PMID: 38137974 PMCID: PMC10745823 DOI: 10.3390/microorganisms11122830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 12/24/2023] Open
Abstract
Cyanobacteria play a relevant role in rice soils due to their contribution to soil fertility through nitrogen (N2) fixation and as a promising strategy to mitigate methane (CH4) emissions from these systems. However, information is still limited regarding the mechanisms of cyanobacterial modulation of CH4 cycling in rice soils. Here, we focused on the response of methane cycling microbial communities to inoculation with cyanobacteria in rice soils. We performed a microcosm study comprising rice soil inoculated with either of two cyanobacterial isolates (Calothrix sp. and Nostoc sp.) obtained from a rice paddy. Our results demonstrate that cyanobacterial inoculation reduced CH4 emissions by 20 times. Yet, the effect on CH4 cycling microbes differed for the cyanobacterial strains. Type Ia methanotrophs were stimulated by Calothrix sp. in the surface layer, while Nostoc sp. had the opposite effect. The overall pmoA transcripts of Type Ib methanotrophs were stimulated by Nostoc. Methanogens were not affected in the surface layer, while their abundance was reduced in the sub surface layer by the presence of Nostoc sp. Our results indicate that mitigation of methane emission from rice soils based on cyanobacterial inoculants depends on the proper pairing of cyanobacteria-methanotrophs and their respective traits.
Collapse
Affiliation(s)
- Germán Pérez
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands or (G.P.); (S.M.B.K.); (M.M.-F.)
- Laboratory of Microbiology, Department of Plant Biology, Agronomy Faculty, University of the Republic, Montevideo 12900, Uruguay;
| | - Sascha M. B. Krause
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands or (G.P.); (S.M.B.K.); (M.M.-F.)
- School of Ecology and Environmental Sciences, East China Normal University, Shanghai 200062, China
| | - Paul L. E. Bodelier
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands or (G.P.); (S.M.B.K.); (M.M.-F.)
| | - Marion Meima-Franke
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands or (G.P.); (S.M.B.K.); (M.M.-F.)
| | - Leonardo Pitombo
- Department of Environmental Sciences, Federal University of São Carlos (UFSCar), São Paulo 18052-780, Brazil;
| | - Pilar Irisarri
- Laboratory of Microbiology, Department of Plant Biology, Agronomy Faculty, University of the Republic, Montevideo 12900, Uruguay;
| |
Collapse
|
7
|
Zhang L, Xu YJ, Ma B, Jiang P, Li S. Intense methane diffusive emissions in eutrophic urban lakes, Central China. ENVIRONMENTAL RESEARCH 2023; 237:117073. [PMID: 37673122 DOI: 10.1016/j.envres.2023.117073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/19/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
Urban lakes are hotspots of methane (CH4) emissions. Yet, actual field measurements of CH4 in these lakes are rather limited and our understanding of CH4 response to urban lake eutrophication is still incomplete. In this study, we measured dissolved CH4 concentrations and quantified CH4 diffusion from four urban lakes in subtropical China during wet and dry seasons. We found that these lakes were constantly CH4-saturated, contributing the greenhouse gas (GHG) to the atmosphere. Nutrient enrichment significantly increased CH4 concentrations and diffusive fluxes. Average CH4 flux rate in the highly-eutrophic lake zones (4.18 ± 7.68 mmol m-2 d-1) was significantly higher than those in the mesotrophic (0.19 ± 0.18 mmol m-2 d-1) and lightly/moderately-eutrophic zones (0.72 ± 2.22 mmol m-2 d-1). Seasonally, CH4 concentrations and fluxes were significantly higher in the wet season than in the dry season in the mesotrophic and the lightly/moderately-eutrophic lake zones, but an inverse pattern existed in the highly-eutrophic lake zones. CH4 concentrations and fluxes increased with elevated levels of nitrogen, phosphorus and dissolved organic carbon (DOC). The accumulation of nutrients provided autochthonous substrate for methanogenesis, indicated by a negative correlation between CH4 and the C:N ratio. Ammonium-nitrogen (NH4+-N) was the best predictor for spatial fluctuation of CH4 concentrations and diffusive fluxes in the mesotrophic and the lightly/moderately-eutrophic lake zones, while total nitrogen (TN) and total phosphorus (TP) levels showed the highest predictability in the highly-eutrophic lake zones. Based on the findings, we conclude that nutrient enrichment in urban lakes can largely increase CH4 diffusion, and that urban sewage inflow is a key concern for eutrophication boosting CH4 production and diffusive emission. Furthermore, our study reveals that small urban lakes may be an important missing source of GHG emissions in the global C accounting, and that the ratio of littoral-to-pelagic zones can be important for predicting lake-scale estimation of CH4 emission.
Collapse
Affiliation(s)
- Liuqing Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China; School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Y Jun Xu
- School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA; Coastal Studies Institute, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Bingjie Ma
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Ping Jiang
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Siyue Li
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China.
| |
Collapse
|
8
|
Tan M, Bian Z, Dong J, Hao M, Qu J. Comparing the variation and influencing factors of CO 2 emission from subsidence waterbodies under different restoration modes in coal mining area. ENVIRONMENTAL RESEARCH 2023; 237:116936. [PMID: 37648185 DOI: 10.1016/j.envres.2023.116936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023]
Abstract
Subsidence waterbodies play an important role in carbon cycle in coal mining area. However, little effort has been made to explore the carbon dioxide (CO2) release characteristics and influencing factors in subsidence waterbodies, especially under different restoration modes. Here, we measured CO2 release fluxes (F(CO2)) across Anguo wetland (AW), louts pond (LP), fishpond (FP), fishery-floating photovoltaic wetland (FFPV), floating photovoltaic wetland (FPV) in coal mining subsidence area, with unrestored subsidence waterbodies (SW) and unaffected normal Dasha river (DR) as the control area. We sampled each waterbody and tested which physical, chemical, and biological characteristics of water and sediment related to variability in CO2. The results indicated that F(CO2) exhibited the following patterns: FFPV > FPV > FP > SW > DR > LP > AW. Trophic lake index (TLI) and microbial biomass carbon content (MBC) in sediment had a positive impact on F(CO2). The dominant archaea Euryarchaeota and Thaumarchaeota, and dominant bacteria Proteobacteria promoted F(CO2). This study can help more accurately quantify CO2 emissions and guide CO2 future emission reduction and subsidence waterbodies estoration.
Collapse
Affiliation(s)
- Min Tan
- School of Public Policy and Management, China University of Mining and Technology, Xuzhou, 221116, China
| | - Zhengfu Bian
- School of Public Policy and Management, China University of Mining and Technology, Xuzhou, 221116, China.
| | - Jihong Dong
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Ming Hao
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Junfeng Qu
- Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou, 221008, China; Xuzhou Institute of Ecological Civilization Construction, Xuzhou, 221008, China
| |
Collapse
|
9
|
Wang T, Zhumabieke M, Zhang N, Liu C, Zhong J, Liao Q, Zhang L. Variable promotion of algae and macrophyte organic matter on methanogenesis in anaerobic lake sediment. ENVIRONMENTAL RESEARCH 2023; 237:116922. [PMID: 37598844 DOI: 10.1016/j.envres.2023.116922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/29/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Shallow lakes are an important natural source of atmospheric methane (CH4), and the input of autochthonous organic matter (OM) into their sediments encourages methanogenesis. Although algal- and macrophytic-originated OM in these lakes are expected to have different impacts on methanogenesis and methanogenic archaeal communities in lake sediments owing to their various properties, their specific influence and role in sediment remain unclear. In this study, a 148-day incubation was carried out by adding algal- and macrophytic-OM to the sediments of shallow eutrophic Lake Chaohu and Lake Taihu in China. CH4 was periodically monitored, while the methanogens were examined via qPCR and high-throughput sequencing at the end of incubation. Algal-OM stimulated CH4 production more than macrophytic-OM in both sediments, with the rates initially increasing and then decreasing before reaching a relative constant. Macrophytic-OM promoted CH4 production to a comparable extent in both lakes, while algal-OM promoted greater CH4 in Lake Chaohu than in Lake Taihu. However, algal-OM did not significantly increase mcrA gene copies, while macrophytic-OM did by 17.0-20.1-fold. Algal-OM potentially promoted the methylotrophic pathway in Lake Taihu but did not change the methanogenic structure in Lake Chaohu. Comparatively, macrophytic-OM promoted CH4 production mainly by acetoclastic methanogen proliferation in both lakes. More CH4 release with algal-OM compared to macrophytic-OM deserves further attention owing to the prevailing increasing algal blooms and the declining macrophyte population in lakes.
Collapse
Affiliation(s)
- Tong Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Maidina Zhumabieke
- Department of Environmental Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Nan Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China; School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, PR China
| | - Cheng Liu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Jicheng Zhong
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Qianjiahua Liao
- Department of Environmental Science, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Lei Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China.
| |
Collapse
|