1
|
Li Y, Li Y, Huang L, Liu S, Zhu M, Qiu L, Huang J, Fu Y, Huang L. Synergistic photocatalysis for bacteria inactivation and organic pollutant removal by S-scheme heterojunction InVO 4/Bi 5O 7I: Performance evaluation and mechanism investigation. J Colloid Interface Sci 2025; 677:234-249. [PMID: 39146812 DOI: 10.1016/j.jcis.2024.08.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/18/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
The low efficiency of charge carrier separation is a major limitation hindering the application of photocatalytic technology. Constructing S-scheme heterojunction photocatalysts not only effectively promotes the separation of charge carriers, but also maximizes the oxidative and reductive capabilities of the two monomers. In this study S-scheme heterogeneous InVO4/Bi5O7I photocatalyst was synthesized by hydrothermal method combined with calcination. The optimal sample 20 % InVO4/Bi5O7I can completely deactivate Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) in 30 min, remove 20 mg/L TC 76.0 % in 60 min and 20 mg/L BPA 93.0 % in 90 min. Intermediate products of TC and BPA degradation were detected using LC-MS, and possible degradation pathways were proposed. The photocurrent and electrochemical impedance spectroscopy (EIS) tests confirm that InVO4/Bi5O7I exhibits excellent photocurrent intensity and photocarrier migration ability, which are crucial reasons for the enhancement of the photocatalytic performance of the InVO4/Bi5O7I composite. Capture experiments indicate that OH, O2-, h+ and e-are reactive species. EPR further confirms the generation of OH and O2-. Combined with Kelvin probe force microscopy (KPFM) and band structure analysis, it is proposed that InVO4/Bi5O7I has an S-scheme charge transfer mechanism.
Collapse
Affiliation(s)
- Yeping Li
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China.
| | - Yanling Li
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Liying Huang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Shuai Liu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Menghao Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Li Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jun Huang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Yanyan Fu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Lijing Huang
- Institute of Micro-Nano Optoelectronic and Terahertz Technology, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
2
|
Dong S, Dai J, Yang Y, Zada A, Qi K. Extended Interfacial Charge Transference in CoFe 2O 4/WO 3 Nanocomposites for the Photocatalytic Degradation of Tetracycline Antibiotics. Molecules 2024; 29:4561. [PMID: 39407493 PMCID: PMC11478208 DOI: 10.3390/molecules29194561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
The large-scale utilization of antibiotics has opened a separate chapter of pollution with the generation of reactive drug-resistant bacteria. To deal with this, in this work, different mass ratios of CoFe2O4/WO3 nanocomposites were prepared following an in situ growth method using the precursors of WO3 and CoFe2O4. The structure, morphology, and optical properties of the nanocomposite photocatalysts were scrutinized by X-ray diffraction (XRD), UV-visible diffuse reflectance spectra (UV-Vis DRS), photoluminescence spectrum (PL), etc. The experimental data signified that the loading of CoFe2O4 obviously changed the optical properties of WO3. The photocatalytic performance of CoFe2O4/WO3 composites was investigated by considering tetracycline as a potential pollutant. The outcome of the analyzed data exposed that the CoFe2O4/WO3 composite with a mass ratio of 5% had the best degradation performance for tetracycline eradication under the solar light, and a degradation efficiency of 77% was achieved in 20 min. The monitored degradation efficiency of the optimized photocatalyst was 45% higher compared with the degradation efficiency of 32% for pure WO3. Capturing experiments and tests revealed that hydroxyl radical (·OH) and hole (h+) were the primary eradicators of the target pollutant. This study demonstrates that a proper mass of CoFe2O4 can significantly push WO3 for enhanced eradication of waterborne pollutants.
Collapse
Affiliation(s)
- Suiying Dong
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali 671000, China; (S.D.)
| | - Jiafu Dai
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali 671000, China; (S.D.)
| | - Ying Yang
- Asset and Laboratory Management Division, Dali University, Dali 671000, China;
| | - Amir Zada
- Department of Chemistry, Abdul Wali Khan University, Mardan 23200, Pakistan
- UNESCO-UNISA Africa Chair in Nanosciences and Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria 0002, South Africa
| | - Kezhen Qi
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali 671000, China; (S.D.)
| |
Collapse
|
3
|
Boddepalli R, Gurugubelli TR, S V N P, Netheti VSB, Yusub S, Tamtam MR, Koutavarapu R, Pidaparthy LS. Efficiency and mechanistic insights of photocatalytic decomposition of tetracycline and rhodamine B utilizing Z-scheme g-C 3N 4/SnWO 4 heterostructures under visible light irradiation. ENVIRONMENTAL RESEARCH 2024; 254:119163. [PMID: 38759770 DOI: 10.1016/j.envres.2024.119163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 05/19/2024]
Abstract
The hydrothermal approach was used in the design and construction of the SnWO4 (SW) nanoplates anchored g-C3N4 (gCN) nanosheet heterostructures. Morphology, optical characteristics, and phase identification were investigated. The heterostructure architect construction and successful interface interaction were validated by the physicochemical characteristics. The test materials were used as a photocatalyst in the presence of visible light to break down the antibiotic tetracycline (TC) and the organic Rhodamine B (RhB). The best photocatalytic degradation efficiency of TC (97%) and RhB (98%) pollutants was demonstrated by the optimized 15 mg of gCNSW-7.5 in 72 and 48 min, respectively, at higher rate constants of 0.0409 and 0.0772 min-1. The interface contact between gCN and SW, which successfully enhanced charge transfer and restricted recombination rate in the photocatalyst, is responsible for the enhanced performance of the gCNSW heterostructure photocatalyst. In addition, the gCNSW heterostructure photocatalyst demonstrated exceptional stability and reusability over the course of four successive testing cycles, highlighting its durable and dependable function. Superoxide radicals and holes were shown to be key players in the degradation of contaminants through scavenger studies. The charge transfer mechanism in the heterostructure is identified as Z-scheme mode with the help of UV-vis DRS analysis. Attributed to its unique structural features, and effective separation of charge carriers, the Z-scheme gCNSW-7.5 heterostructure photocatalyst exhibits significant promise as an exceptionally efficient catalyst for the degradation of pollutants. This positions it as a prospective material with considerable potential across various environmental applications.
Collapse
Affiliation(s)
- Ramu Boddepalli
- Department of Physics, Andhra University, Visakhapatnam, 530 003, Andhra Pradesh, India
| | | | - Pammi S V N
- Department of Physics, School of Sciences, SR University, Warangal, 506 371, Telangana, India
| | - V S Bhagavan Netheti
- Department of Physics, Dr. VS Krishna Govt. Degree College (Autonomous), Visakhapatnam, 530 013, Andhra Pradesh, India
| | - S Yusub
- Freshman Engineering Department, Lakireddy Bali Reddy College of Engineering (Autonomous), Mylavaram, 521 230, Andhra Pradesh, India
| | - Mohan Rao Tamtam
- Data Science Lab, Department of Information and Communication Engineering, College of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Ravindranadh Koutavarapu
- Physics Division, Department of Basic Sciences and Humanities, GMR Institute of Technology, Rajam, 532 127, Andhra Pradesh, India.
| | - Lalitha Saranya Pidaparthy
- Department of Physics, Andhra University, Visakhapatnam, 530 003, Andhra Pradesh, India; Department of Physics, Visakha Govt. Degree College (W), Visakhapatnam, 530 020, Andhra Pradesh, India.
| |
Collapse
|
4
|
Ahmad I, Idrees A, Alatawi NS, Ahmed SB, Shaban M, Ghadi YY. Sn-based materials in photocatalysis: A review. Adv Colloid Interface Sci 2023; 321:103032. [PMID: 37883848 DOI: 10.1016/j.cis.2023.103032] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/15/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Development and the application of Sn-based materials have become more prevalent in recent years due to concerns regarding the energy crisis, environmental pollution, and the urgent need of constructing inexpensive and highly effective photocatalysis. The recent advancement in Sn-based materials for efficient photocatalysts, such as Sn alloys, Sn oxides, Sn sulfides, Sn selenides, Sn niobates, Sn tantalites, and Sn tungstates, is summarized in this study. Several design ideas for increasing the photoactivity of Sn-based materials in various photocatalytic applications are emphasized. In addition, we considered their present applications in energy generation (H2 evolution, CO2 reduction, and N2 fixation) and environmental remediation (air purification and wastewater treatment). As a result, the current review will deepen the reader's understanding of the properties and potential uses of Sn-based materials in photocatalysis. Hence, this paper will serve as a guide in promoting the domain of Sn-based materials for future photocatalytic technologies.
Collapse
Affiliation(s)
- Irshad Ahmad
- Department of Physics, University of Agriculture, 38040 Faisalabad, Pakistan.
| | - Asim Idrees
- Department of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan
| | - Naifa S Alatawi
- Physics Department, Faculty of Science, University of Tabuk, Tabuk, 71421, Saudi Arabia
| | - Samia Ben Ahmed
- Department of Chemistry College of Science, King Khalid University, Abha, P.O. Box 9004, Saudi Arabia
| | - Mohamed Shaban
- Department of Physics, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia; Nanophotonics and Applications (NPA), Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Yazeed Yasin Ghadi
- Department of Computer Science and Software Engineering, Al Ain University, United Arab Emirates
| |
Collapse
|
5
|
Zhou Y, Chai Y, Sun H, Li X, Liu X, Liang Y, Gong X, Wu Z, Liu C, Qin P. Design strategies and mechanisms of g-C 3N 4-based photoanodes for photoelectrocatalytic degradation of organic pollutants in water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118545. [PMID: 37418928 DOI: 10.1016/j.jenvman.2023.118545] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/17/2023] [Accepted: 06/27/2023] [Indexed: 07/09/2023]
Abstract
Emerging photoelectrocatalytic (PEC) systems integrate the advantages of photocatalysis and electrocatalysis and are considered as a promising technology for solving the global organic pollution problem in water environments. Among the photoelectrocatalytic materials applied for organic pollutant degradation, graphitic carbon nitride (CN) has the combined advantages of environmental compatibility, stability, low cost, and visible light response. However, pristine CN has disadvantages such as low specific surface area, low electrical conductivity, and high charge complexation rate, and how to improve the degradation efficiency of PEC reaction and the mineralization rate of organic matter is the main problem faced in this field. Therefore, this paper reviews the progress of various functionalized CN used for PEC reaction in recent years, and the degradation efficiency of these CN-based materials is critically evaluated. First, the basic principles of PEC degradation of organic pollutants are outlined. Then, engineering strategies to enhance the PEC activity of CN (including morphology control, elemental doping, and heterojunction construction) are focused on, and the structure-activity relationships between these engineering strategies and PEC activity are discussed. In addition, the important role of influencing factors on the PEC system is summarized in terms of mechanism, to provide guidance for the subsequent research. Finally, suggestions and perspectives are provided for the preparation of efficient and stable CN-based photoelectrocatalysts for practical wastewater treatment applications.
Collapse
Affiliation(s)
- Yunfei Zhou
- College of Resources and Environment, Xiangtan University, Xiangtan, 411105, PR China; College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, PR China
| | - Youzheng Chai
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, 410128, PR China
| | - Haibo Sun
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, 410128, PR China
| | - Xueying Li
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, 410128, PR China
| | - Xingwang Liu
- College of Resources and Environment, Xiangtan University, Xiangtan, 411105, PR China.
| | - Yunshan Liang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, 410128, PR China
| | - Xiaomin Gong
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, 410128, PR China
| | - Zhibin Wu
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, 410128, PR China.
| | - Chao Liu
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, 410128, PR China
| | - Pufeng Qin
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, 410128, PR China.
| |
Collapse
|
6
|
Tamtam MR, Koutavarapu R, Shim J. InVO 4 nanosheets decorated with ZnWO 4 nanorods: A novel composite and its enhanced photocatalytic performance under solar light. ENVIRONMENTAL RESEARCH 2023; 227:115735. [PMID: 37001849 DOI: 10.1016/j.envres.2023.115735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/12/2023] [Accepted: 03/20/2023] [Indexed: 05/08/2023]
Abstract
InVO4 is the most attractive inorganic new-generation material for advanced scientific research, especially in the fields of energy and environmental science. In theory, this stable, non-toxic, energy-efficient metal vanadate semiconductor is expected to exhibit significant catalytic activity owing to its narrow bandgap energy. However, this has not been achieved in practice because of its inherent defects in terms of the separation and migration of charge carriers. In fact, the exploration of this material is still in its infancy, and more research is needed to improve its efficiency and speed up its commercialization. Band gap engineering using heterojunction formation offers better results than other methods, such as morphological variations and doping efforts. In this context, the present study offers a significant solution substantiated by experimental results. This includes the successful synthesis of a novel nanocomposite of InVO4 nanosheets decorated with ZnWO4 nanorods with a unique improved light absorption ability. Three composites with 26.48-33.85 nm crystal sizes and 11.74-19.98 m2/g surface area were prepared with tailor-made bandgap energies in the range of 2.52-2.97 eV. Furthermore, they produced high photoexcitation currents with low EIS resistance with respect to their constituents. The as-prepared InVO4-based novel catalyst almost completely (98.33%) decomposed tetracycline (TC) antibiotic in just 90 min, proving its high efficacy. The enhanced performance of the novel catalyst is 7.6 times that of InVO4 and 10 times that of ZnWO4. Moreover, the catalyst intake was significantly small (15 mg/100 mL TC solution).
Collapse
Affiliation(s)
- Mohan Rao Tamtam
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Ravindranadh Koutavarapu
- Department of Robotics Engineering, College of Mechanical and IT Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Jaesool Shim
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
7
|
Nadikatla SK, Chintada VB, Gurugubelli TR, Koutavarapu R. Review of Recent Developments in the Fabrication of ZnO/CdS Heterostructure Photocatalysts for Degradation of Organic Pollutants and Hydrogen Production. Molecules 2023; 28:molecules28114277. [PMID: 37298752 DOI: 10.3390/molecules28114277] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Researchers have recently paid a lot of attention to semiconductor photocatalysts, especially ZnO-based heterostructures. Due to its availability, robustness, and biocompatibility, ZnO is a widely researched material in the fields of photocatalysis and energy storage. It is also environmentally beneficial. However, the wide bandgap energy and quick recombination of the photoinduced electron-hole pairs of ZnO limit its practical utility. To address these issues, many techniques have been used, such as the doping of metal ions and the creation of binary or ternary composites. Recent studies showed that ZnO/CdS heterostructures outperformed bare ZnO and CdS nanostructures in terms of photocatalytic performance when exposed to visible light. This review largely concentrated on the ZnO/CdS heterostructure production process and its possible applications including the degradation of organic pollutants and hydrogen evaluation. The importance of synthesis techniques such as bandgap engineering and controlled morphology was highlighted. In addition, the prospective uses of ZnO/CdS heterostructures in the realm of photocatalysis and the conceivable photodegradation mechanism were examined. Lastly, ZnO/CdS heterostructures' challenges and prospects for the future have been discussed.
Collapse
Affiliation(s)
- Santhosh Kumar Nadikatla
- Chemistry Division, Department of Basic Sciences and Humanities, GMR Institute of Technology, Rajam 532127, Andhra Pradesh, India
| | - Vinod Babu Chintada
- Department of Mechanical Engineering, GMR Institute of Technology, Rajam 532127, Andhra Pradesh, India
| | - Thirumala Rao Gurugubelli
- Physics Division, Department of Basic Sciences and Humanities, GMR Institute of Technology, Rajam 532127, Andhra Pradesh, India
| | - Ravindranadh Koutavarapu
- Department of Robotics Engineering, College of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|