1
|
Rafiq K, Sadia I, Abid MZ, Waleed MZ, Rauf A, Hussain E. Scientific Insights into the Quantum Dots (QDs)-Based Electrochemical Sensors for State-of-the-Art Applications. ACS Biomater Sci Eng 2024; 10:7268-7313. [PMID: 39499739 DOI: 10.1021/acsbiomaterials.4c01256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Size-dependent optical and electronic properties are unique characteristics of quantum dots (QDs). A significant advantage is the quantum confinement effect that allows their precise tuning to achieve required characteristics and behavior for the targeted applications. Regarding the aforementioned factors, QDs-based sensors have exhibited dramatic potential for the diverse and advanced applications. For example, QDs-based devices have been potentially utilized for bioimaging, drug delivery, cancer therapy, and environmental remediation. In recent years, use of QDs-based electrochemical sensors have been further extended in other areas like gas sensing, metal ion detection, monitoring of organic pollutants, and detection of radioactive isotopes. Objective of this study is to rationalize the QDs-based electrochemical sensors for state-of-the-art applications. This review article comprehensively illustrates the importance of aforementioned devices along with sources from which QDs devices have been formulated and fabricated. Other distinct features of QDs devices are associated with their extremely high active surfaces, inherent ability of reproducibility, sensitivity, and selectivity for the targeted analyte detection. In this review, major categories of QD materials along with justification of their key roles in electrochemical devices have been demonstrated and discussed. All categories have been evaluated with special emphasis on the advantages and drawbacks/challenges associated with QD materials. However, in the interests of readers and researchers, recent improvements also have been included and discussed. On the evaluation, it has been concluded that despite significant challenges, QDs-based electrochemical sensors exhibit excellent performances for state-of-the-art and targeted applications.
Collapse
Affiliation(s)
- Khezina Rafiq
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Iqra Sadia
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Zeeshan Abid
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Zaryab Waleed
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Abdul Rauf
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Ejaz Hussain
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| |
Collapse
|
2
|
Khan R, Shukla S, Kumar M, Barceló D, Zuorro A, Bhargava PC. Progress and obstacles in employing carbon quantum dots for sustainable wastewater treatment. ENVIRONMENTAL RESEARCH 2024; 261:119671. [PMID: 39048068 DOI: 10.1016/j.envres.2024.119671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
We explored the potential of carbon quantum dots (CQDs) as novel materials for wastewater treatment and their role towards environmental sustainability. The advantages of CQDs over other carbon-based materials, when synthesized using the same precursor material and for the same contaminant are discussed, enabling future researchers to choose the appropriate material. CQDs have demonstrated exceptional adaptability in various wastewater treatment, acting as efficient adsorbents for contaminants, exhibiting excellent photocatalytic properties for degradation of organic pollutants, and functioning as highly sensitive sensors for water quality monitoring. We found that bottom-up approach has better control over particle size (resulting CQDs: 1-4 nm), whereas top-down synthesis approach (resulting CQDs: 2-10 nm) have more potential for large scale applications and tunability. Transmission electron microscopy (TEM) remains the most expensive characterization technique, which provides the best resolution of the CQD's surface. The study emphasizes on the environmental impact and safety considerations pertaining to CQDs by emphasizing the need for thorough toxicity evaluation, and necessary environmental precautions. The study also identifies the lacunae pertaining to critical challenges in practical implementation of CQDs, such as scalability, competition of co-existing contaminants, and stability. Finally, future research directions are proposed, advocating green synthesis approaches, tailored surface functionalization, and, lowering the overall cost for analysis, synthesis and application of CQDs.
Collapse
Affiliation(s)
- Ramsha Khan
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, 226001, Uttar Pradesh, India.
| | - Saurabh Shukla
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, 226001, Uttar Pradesh, India.
| | - Manish Kumar
- Sustainability Cluster, School of Engineering University of Petroleum and Energy Studies Dehradun, Uttarakhand, India; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey, 64849, Nuevo Leon, Mexico.
| | - Damià Barceló
- Sustainability Cluster, School of Engineering University of Petroleum and Energy Studies Dehradun, Uttarakhand, India; Chemistry and Physics Department, University of Almeria, Ctra Sacramento s/n, 04120, Almería, Spain.
| | - Antonio Zuorro
- Department of Chemical Engineering, Materials and Environment, Sapienza University, Via Eudossiana 18, Rome, 00184, Italy.
| | - Preeti Chaturvedi Bhargava
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, 226001, Uttar Pradesh, India.
| |
Collapse
|
3
|
Zhao L, Zhang P, Li L, Li N, Tuerhong R, Su X, Sun W, Han L. Revealing the potential of quantum dot nanomaterials in photocatalytic applications. CHEMOSPHERE 2024; 361:142547. [PMID: 38851503 DOI: 10.1016/j.chemosphere.2024.142547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
The practical fabrication of quantum dot materials, including their size, shape, form, crystallinity, and chemical composition, is a crucial research area in the field of photocatalysis. Quantum dots can effectively enhance the separation and transfer of carriers and expand the utilization of visible light when used in heterogeneous junctions with wide bandgap semiconductors. Additionally, they exhibit excellent photosensitivity properties that significantly improve the material's capacity for absorbing visible light. This paper systematically presents an overview of the outstanding optical properties exhibited by quantum dots based on both domestic and international research on photocatalytic materials. Furthermore, it summarizes the research content, characteristics, and current challenges associated with common types of quantum dots and photocatalytic materials while highlighting their applications in environmental remediation and energy production. Finally, this paper anticipates future trends in the development of photocatalysis by providing valuable insights into more efficient semiconductor materials that are cost-effective yet environmentally friendly.
Collapse
Affiliation(s)
- Le Zhao
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, PR China
| | - Ping Zhang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, PR China.
| | - Longjian Li
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, PR China
| | - Ning Li
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, PR China
| | - Reyila Tuerhong
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, PR China
| | - Xiaoping Su
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, PR China.
| | - Wanhong Sun
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, PR China
| | - Lijuan Han
- Gansu Natural Energy Institute, Gansu Academy of Science, Lanzhou, 730046, PR China.
| |
Collapse
|
4
|
Majdoub M, Sengottuvelu D, Nouranian S, Al-Ostaz A. Graphitic Carbon Nitride Quantum Dots (g-C 3N 4 QDs): From Chemistry to Applications. CHEMSUSCHEM 2024; 17:e202301462. [PMID: 38433108 DOI: 10.1002/cssc.202301462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Since their emergence in 2014, graphitic carbon nitride quantum dots (g-C3N4 QDs) have attracted much interest from the scientific community due to their distinctive physicochemical features, including structural, morphological, electrochemical, and optoelectronic properties. Owing to their desirable characteristics, such as non-zero band gap, ability to be chemically functionalized or doped, possessing tunable properties, outstanding dispersibility in different media, and biocompatibility, g-C3N4 QDs have shown promise for photocatalysis, energy devices, sensing, bioimaging, solar cells, optoelectronics, among other applications. As these fields are rapidly evolving, it is very strenuous to pinpoint the emerging challenges of the g-C3N4 QDs development and application during the last decade, mainly due to the lack of critical reviews of the innovations in the g-C3N4 QDs synthesis pathways and domains of application. Herein, an extensive survey is conducted on the g-C3N4 QDs synthesis, characterization, and applications. Scenarios for the future development of g-C3N4 QDs and their potential applications are highlighted and discussed in detail. The provided critical section suggests a myriad of opportunities for g-C3N4 QDs, especially for their synthesis and functionalization, where a combination of eco-friendly/single step synthesis and chemical modification may be used to prepare g-C3N4 QDs with, for example, enhanced photoluminescence and production yields.
Collapse
Affiliation(s)
- Mohammed Majdoub
- Center for Graphene Research and Innovation, University of Mississippi, University, MS 38677, United States
| | - Dineshkumar Sengottuvelu
- Center for Graphene Research and Innovation, University of Mississippi, University, MS 38677, United States
| | - Sasan Nouranian
- Center for Graphene Research and Innovation, University of Mississippi, University, MS 38677, United States
- Department of Chemical Engineering, University of Mississippi, University, MS 38677, United States
| | - Ahmed Al-Ostaz
- Center for Graphene Research and Innovation, University of Mississippi, University, MS 38677, United States
- Department of Civil Engineering, University of Mississippi, University, MS 38677, United States
| |
Collapse
|
5
|
Goren AY, Gungormus E, Vatanpour V, Yoon Y, Khataee A. Recent Progress on Synthesis and Properties of Black Phosphorus and Phosphorene As New-Age Nanomaterials for Water Decontamination. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38604807 DOI: 10.1021/acsami.3c19230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Concerted efforts have been made in recent years to find solutions to water and wastewater treatment challenges and eliminate the difficulties associated with treatment methods. Various techniques are used to ensure the recycling and reuse of water resources. Owing to their excellent chemical, physical, and biological properties, nanomaterials play an important role when integrated into water/wastewater treatment technologies. Black phosphorus (BP) is a potential nanomaterial candidate for water and wastewater treatment, especially its monolayer 2D derivative called phosphorene. Phosphorene offers relative adjustability in its direct bandgap, high charge carrier mobility, and improved in-plane anisotropy compared to the most extensively studied 2D nanomaterials. In this study, we examined the physical and chemical characteristics and synthetic processes of BP and phosphorene. We provide an overview of the latest advancements in the main applications of BP and phosphorene in water/wastewater treatment, which are categorized as photocatalytic, adsorption, and membrane filtration processes. Additionally, we explore the existing difficulties in the integration of BP and phosphorene into water/wastewater treatment technologies and prospects for future research in this field. In summary, this review highlights the ongoing necessity for significant research efforts on the integration of BP and phosphorene in water and wastewater applications.
Collapse
Affiliation(s)
- A Yagmur Goren
- Department of Environmental Engineering, Izmir Institute of Technology, Urla 35430, Izmir, Turkey
| | - Elif Gungormus
- Department of Chemical Engineering, Izmir Institute of Technology, Urla 35430, Izmir, Turkey
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran
- Environmental Engineering Department & National Research Center on Membrane Technologies (MEM-TEK), Istanbul Technical University, Istanbul 34469, Turkey
| | - Yeojoon Yoon
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Alireza Khataee
- Department of Chemical Engineering & ITU Synthetic Fuels and Chemicals Technology Center (ITU-SENTEK), Istanbul Technical University, Istanbul 34469, Turkey
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran
| |
Collapse
|
6
|
Yavuzturk Gul B, Orhun Teber O, Tuncay G, Pekgenc E, Arabi N, Hemmati-Eslamlu P, Habibi-Yangjeh A, Vatanpour V, Koyuncu I. Modification of PAN electrospun nanofiber membranes with g-C 3N 4 nanotubes/carbon dots to enhance MBR performance. CHEMOSPHERE 2024; 349:140866. [PMID: 38056719 DOI: 10.1016/j.chemosphere.2023.140866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
This study is dedicated to the enhancement of electrospun polyacrylonitrile (PAN) nanofiber membranes for their application in membrane bioreactor (MBR) processes. The improvement is achieved through the incorporation of graphitic carbon nitride nanotubes/carbon dots (g-C3N4 NT/CDs) and subsequent heat post-treatments at varying temperatures. Notably, the hot-pressing methodology effectively mitigates surface roughness and significantly reduces issues related to peeling during nanofiber experimentation. Our results demonstrate that the introduction of 0.5 wt% of g-C3N4 NT/CDs leads to a substantial enhancement in water flux. In particular, nanocomposite membranes subjected to hot-pressing at 90 °C for 10 min exhibited an impressive flux recovery ratio (FRR) of 70%. Furthermore, the heat-treated nanocomposite membranes exhibited remarkable antifouling properties and significantly reduced fouling rates when compared to their heat-treated bare counterparts. This study underscores the noteworthy potential of g-C3N4 NT/CDs-modified PAN nanofiber membranes to substantially elevate MBR performance, firmly positioning them as highly promising candidates for critical applications in the domains of water and wastewater treatment. However, it is imperative to underscore that the existing written material necessitates a comprehensive overhaul to align with the provided structural framework.
Collapse
Affiliation(s)
- Bahar Yavuzturk Gul
- National Research Center on Membrane Technologies (MEM-TEK), Istanbul Technical University, Maslak 34469, Istanbul, Turkey; Department of Environmental Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Oguz Orhun Teber
- National Research Center on Membrane Technologies (MEM-TEK), Istanbul Technical University, Maslak 34469, Istanbul, Turkey; Nano Science and Nano Engineering Department, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| | - Gizem Tuncay
- National Research Center on Membrane Technologies (MEM-TEK), Istanbul Technical University, Maslak 34469, Istanbul, Turkey; Department of Environmental Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Enise Pekgenc
- National Research Center on Membrane Technologies (MEM-TEK), Istanbul Technical University, Maslak 34469, Istanbul, Turkey; Department of Environmental Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Nigar Arabi
- National Research Center on Membrane Technologies (MEM-TEK), Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Paria Hemmati-Eslamlu
- Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Aziz Habibi-Yangjeh
- Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Vahid Vatanpour
- National Research Center on Membrane Technologies (MEM-TEK), Istanbul Technical University, Maslak 34469, Istanbul, Turkey; Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911, Tehran, Iran.
| | - Ismail Koyuncu
- National Research Center on Membrane Technologies (MEM-TEK), Istanbul Technical University, Maslak 34469, Istanbul, Turkey; Department of Environmental Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey.
| |
Collapse
|
7
|
Yue J, Yang H, Wang S, Liu C, Wang L. Photocarrier transfer induced by N δ- → W δ+ in tungsten trioxide/carbon nitride for dual-path production of hydrogen peroxide towards ciprofloxacin degradation. J Colloid Interface Sci 2024; 653:981-991. [PMID: 37778153 DOI: 10.1016/j.jcis.2023.09.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/11/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Photo self-Fenton catalyst is a promising candidate for solar energy conversion and environmental remediation. Here we reported a Tungsten trioxide/carbon nitride (WO3/CN) in which the surficial amino groups on CN are inserted into the WO3 matrix, forming coordinate covalently Nδ- → Wδ+ in construction of an intimate S-scheme heterojunction. The intimantance promotes the transfer of photocarriers under light irradiation. The nanohybrids produced hydrogen peroxide (H2O2) in a rate about 20 times of pristine CN. A dual-path architecture in which H2O2 are produced via hole-water oxidation and electron-oxygen reduction was poposed. It is founded that ciprofloxacin also involved in production of H2O2 by their deprotonation to superoxide anions, and holes and hydroxyl radicals effectively attack the weak sites in skeleton of ciprofloxacin. This work suggests a great significance of strategy in self-producing of H2O2 in utilizing solar energy and molecular oxygen for water, particularly the surface water decontamination.
Collapse
Affiliation(s)
- Junpeng Yue
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Hanpei Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Shi Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Chen Liu
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Lina Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|