1
|
Kapoor A, Raghunathan M, Lal B, Kumar P, Srivastava N, Devnani GL, Pal DB. Sustainable valorization of waste plastic into nanostructured materials for environmental, energy, catalytic and biomedical applications: A review. CHEMOSPHERE 2024; 364:143279. [PMID: 39251163 DOI: 10.1016/j.chemosphere.2024.143279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Abstract
The extensive production and utilization of plastic products are inevitable in the current scenario. However, the non-degradable nature of waste plastic generated after use poses a grave concern. Comprehensive efforts are being made to find viable technological solutions to manage the escalating challenge of waste plastic. This review focuses on the progress made in transformation of waste plastic into value-added nanomaterials. An overview is provided of the waste plastic issue on a global level and its ecological impacts. Currently established methodologies for waste plastic management are examined, along with their limitations. Subsequently, state-of-the-art techniques for converting waste plastic into nanostructured materials are presented, with a critical evaluation of their distinct merits and demerits. Several demonstrated technologies and case studies are discussed regarding the utilization of these nanomaterials in diverse applications, including environmental remediation, energy production and storage, catalytic processes, sensors, drug delivery, bioimaging, regenerative medicine and advanced packaging materials. Moreover, challenges and prospects in the commercial level production of waste plastic-derived nanomaterials and their adoption for industrial and practical usage are highlighted. Overall, this work underscores the potential of transforming waste plastic into nanostructured materials for multifaceted applications. The valorization approach presented here offers an integration of waste plastic management and sustainable nanotechnology. The development of such technologies should pave the way toward a circular economy and the attainment of sustainable development goals.
Collapse
Affiliation(s)
- Ashish Kapoor
- Department of Chemical Engineering, Harcourt Butler Technical University, Kanpur, Uttar Pradesh, 208002, India
| | - Muthukumar Raghunathan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Basant Lal
- Department of Chemistry, Institute of Applied Sciences and Humanities, GLA University, Mathura, 281406, India
| | - Praveen Kumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Neha Srivastava
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, Varanasi, 221005, Uttar Pradesh, India; Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - G L Devnani
- Department of Chemical Engineering, Harcourt Butler Technical University, Kanpur, Uttar Pradesh, 208002, India
| | - Dan Bahadur Pal
- Department of Chemical Engineering, Harcourt Butler Technical University, Kanpur, Uttar Pradesh, 208002, India.
| |
Collapse
|
2
|
Soni H, Bhattu M, Sd P, Kaur M, Verma M, Singh J. Recent advances in waste-derived carbon dots and their nanocomposites for environmental remediation and biological applications. ENVIRONMENTAL RESEARCH 2024; 251:118560. [PMID: 38447603 DOI: 10.1016/j.envres.2024.118560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/08/2024]
Abstract
The surging demand for eco-friendly nanomaterial synthesis has spurred the emergence of green approaches for synthesizing carbon dots (CDs). These methods utilized natural carbon sources, such as different kind of waste for CDs synthesis, underscoring their significance in waste management and circular economy initiatives. Furthermore, the properties of CDs can be tailored by their functionalization with different materials, enabling their versatile utilization in diverse scientific domains. In this regard, the current study delves into an in-depth review of recent advances in the green/sustainable fabrication of carbon dots nanocomposites (CDNCs) with metal/metal oxides and polymers within the timeframe of 2019-2023. It begins by categorizing different types of CDs, analyzing their associated nanocomposites with mechanistic insights. The primary focus is on green synthesis methods, particularly those that employ waste materials. Furthermore, we also discussed the applications of these CDs in both environmental and biological fields by covering areas such as catalysis, photocatalysis, heavy metal ion sensing, antimicrobial, and bioimaging with in-depth underlying mechanisms. At last, the review highlights the significant challenges with future directions. These include the pursuit of cost-effective green precursors, the advancement of streamlined one-step synthesis techniques, and their efficient utilization for diverse applications. Therefore, this review provides valuable insights for researchers seeking to enhance the functionality and sustainability of CDNCs by highlighting their potential to address environmental and biological challenges.
Collapse
Affiliation(s)
- Himanshi Soni
- Department of Chemistry, Chandigarh University, Mohali-140413, Punjab, India
| | - Monika Bhattu
- Department of Chemistry, Chandigarh University, Mohali-140413, Punjab, India; University Centre for Research and Development, Chandigarh University, Mohali-140413, Punjab, India
| | - Priya Sd
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica-1000000, Chile
| | - Manvinder Kaur
- Department of Chemistry, Chandigarh University, Mohali-140413, Punjab, India
| | - Meenakshi Verma
- Department of Chemistry, Chandigarh University, Mohali-140413, Punjab, India; University Centre for Research and Development, Chandigarh University, Mohali-140413, Punjab, India.
| | - Jagpreet Singh
- Department of Chemistry, Chandigarh University, Mohali-140413, Punjab, India; University Centre for Research and Development, Chandigarh University, Mohali-140413, Punjab, India.
| |
Collapse
|
3
|
Thirumalaivasan N, Mahapatra S, Ramanathan G, Kumar A, Raja T, Muthuramamoorthy M, Pandit B, Pandiaraj S, Prakash S. Exploring antimicrobial and biocompatible applications of eco-friendly fluorescent carbon dots derived from fast-food packaging waste transformation. ENVIRONMENTAL RESEARCH 2024; 244:117888. [PMID: 38097060 DOI: 10.1016/j.envres.2023.117888] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
In the face of escalating environmental concerns, particularly the pervasive issue of non-biodegradable fast-food packaging waste, this study introduces a ground-breaking solution that not only addresses waste management but also advances biomedical technology. Utilizing the underexploited resource of Fucoidan, a sulfated polysaccharide from brown algae, we have innovatively transformed fast-food packaging waste into eco-friendly fluorescent carbon dots (FPCDs). These FPCDs were meticulously characterized through advanced techniques like FT-IR, TEM, and XRD, shedding light on their unique structure, morphology, and composition. A significant discovery of this study is the potent antimicrobial properties of these FPCDs, which demonstrate remarkable effectiveness against specific bacterial and fungal strains. This opens new avenues in the realm of biomedical applications, including imaging, drug delivery, and biosensing. Furthermore, extensive toxicity assessments, including the Brine shrimp lethality assay and Adult Artemia toxicity tests, underscore the safety of these nanoparticles, bolstering their applicability in sensitive medical scenarios. Our research presents a compelling dual approach, ingeniously tackling environmental sustainability issues by repurposing waste while simultaneously creating valuable materials for biomedical use. This dual benefit underscores the transformative potential of our approach, setting a precedent in both waste management and medical innovation.
Collapse
Affiliation(s)
- Natesan Thirumalaivasan
- Department of Periodontics, Saveetha Dental College, and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Sonalismita Mahapatra
- Marine Biotechnology Research Laboratory, Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, OMR Campus, Tamilnadu Dr J Jayalalithaa Fisheries University, Vaniyanchavadi, Chennai, 603103, India
| | - Ganesan Ramanathan
- Postgraduate and Research Department of Microbiology, Sri Paramakalyani College, Alwarkurichi, 627412, India
| | - Anuj Kumar
- Department of Chemistry, GLA University, Mathura, 281406, India
| | - Thandavamoorthy Raja
- Material Science Lab, Department of Prosthodontics, Saveetha Dental College and Hospitals, SIMATS, Chennai- 77, Tamil Nadu, India
| | | | - Bidhan Pandit
- Department of Materials Science and Engineering and Chemical Engineering, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911, Legnes, Madrid, Spain
| | - Saravanan Pandiaraj
- Department of Self-Development Skills, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Santhiyagu Prakash
- Marine Biotechnology Research Laboratory, Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, OMR Campus, Tamilnadu Dr J Jayalalithaa Fisheries University, Vaniyanchavadi, Chennai, 603103, India.
| |
Collapse
|