1
|
Zhang J, Liu L, Dai X, Li B, Zhang S, Yu Y. Thyroid and parathyroid function disorders induced by short-term exposure of microplastics and nanoplastics: Exploration of toxic mechanisms and early warning biomarkers. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134960. [PMID: 38901250 DOI: 10.1016/j.jhazmat.2024.134960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Human exposure to micro- and nano-plastics (MNPs) primarily occurs through respiration and diet in the environment. However, the early effects and warning signs of MNPs exposure on vertebrates are unclear. Here we used intratracheal instillation and intragastric infusion to establish mouse models for MNPs exposure to systematically investigate the toxic mechanisms of MNPs on endocrine organs. Results showed that MNPs induced endocrine disruptions in short-term exposure by both dietary and respiratory pathways. Microplastics (MPs) exposed through dietary route were more toxic to thyroid gland, whereas nanoplastics (NPs) exhibited the highest level of toxicity to parathyroid gland through respiration. The transcriptome and validation of related functional genes revealed that MNPs affected the synthesis of thyroglobulin by interfering with the expressions of PAX8 and CREB. MNPs also impacted the levels of thyroid stimulating hormone, further mediating the secretion of thyroid hormones. Moreover, MNPs modulate the expression of Mafb, thereby exerting regulatory effects on parathyroid hormone (PTH) synthesis and growth development in parathyroid cells. Meanwhile, MNPs interfered with the expression of IP3R in the calcium signaling pathway, indirectly affecting the secretion of PTH. This study reveals the effects and mechanisms of MNPs on thyroid and parathyroid and highlights the significance of early warning of MNPs exposure.
Collapse
Affiliation(s)
- Jinpeng Zhang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Ling Liu
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Xiaowei Dai
- Department of Reproductive Medicine Center, The Second Norman Bethune Hospital of Jilin University, Changchun 130041, China
| | - Bo Li
- Department of Endocrinology, Tianjin Huanghe Hospital, Tianjin 300110, China
| | - Shaoxuan Zhang
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
2
|
Manera M, Giari L. Segmentation of Renal Thyroid Follicle Colloid in Common Carp: Insights into Perfluorooctanoic Acid-Induced Morphometric Alterations. TOXICS 2024; 12:369. [PMID: 38787148 PMCID: PMC11126022 DOI: 10.3390/toxics12050369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Perfluorooctanoic acid (PFOA) is a globally prevalent contaminant of concern recognised for its persistence and detrimental effects on both wildlife and humans. While PFOA has been established as a disruptor of thyroid function, limited data exist regarding its impact on thyroid morphology. The kidney of the common carp (Cyprinus carpio) harbours numerous thyroid follicles, rendering it a valuable biomarker organ for investigating PFOA-induced thyroid alterations. Renal tissue slides, stained with the Alcian blue/PAS method, were examined from carp in three experimental groups: unexposed, exposed to 200 ng L-1, and exposed to 2 mg L-1 of PFOA over 56 days. Thyroid follicle colloids were segmented, and related morphometric parameters, including perimeter, area, and shape descriptors, were obtained. Statistical analyses revealed significant reductions in thyroid follicle colloid perimeter and area in the 200 ng L-1 PFOA group compared to the unexposed and 2 mg L-1 PFOA groups. Additionally, the fish exposed to PFOA exhibited a significantly higher follicle count compared to the unexposed fish. These findings collectively suggest that PFOA induces thyroid folliculogenesis, emphasising its impact on thyroid morphology even at an environmentally relevant concentration (200 ng L-1).
Collapse
Affiliation(s)
- Maurizio Manera
- Department of Biosciences, Food and Environmental Technologies, University of Teramo, St. R. Balzarini 1, 64100 Teramo, Italy
| | - Luisa Giari
- Department of Environmental and Prevention Sciences, University of Ferrara, St. L. Borsari 46, 44121 Ferrara, Italy;
| |
Collapse
|
3
|
Park EJ, Li K, Kang MS, Choi JW, Baek B, Yang YK, Cho AE, Lee BS. Perfluorooctanoic acid inhibits cell proliferation through mitochondrial damage. Toxicol In Vitro 2024; 97:105810. [PMID: 38513818 DOI: 10.1016/j.tiv.2024.105810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Grown evidence has shown that the liver and reproductive organs were the main target organs of perfluorooctanoic acid (PFOA). Herein, we studied a toxic mechanism of PFOA using HeLa Chang liver epithelial cells. When incubated with PFOA for 24 h or 48 h, cell proliferation was inhibited in a concentration- and time-dependent fashion, but interestingly, the feature of dead cells was not notable. Mitochondrial volume was increased with concentration and time, whereas the mitochondrial membrane potential and produced ATP amounts were significantly reduced. Autophagosome-like vacuoles and contraction of the mitochondrial inner membrane were observed in PFOA-treated cells. The expression of acetyl CoA carboxylase (ACC) and p-ACC proteins rapidly decreased, and that of mitochondrial dynamics-related proteins increased. The expression of solute carrier family 7 genes, ChaC glutathione-specific gamma-glutamylcyclotransferase 1, and 5S ribosomal RNA gene was up-regulated the most in cells exposed to PFOA for 24 h, and the KEGG pathway analysis revealed that PFOA the most affected metabolic pathways and olfactory transduction. More importantly, PPAR alpha, fatty acid binding protein 1, and CYP450 family 1 subfamily A member 1 were identified as the target proteins for binding between PFOA and cells. Taken together, we suggest that disruption of mitochondrial integrity and function may contribute closely to PFOA-induced cell proliferation inhibition.
Collapse
Affiliation(s)
- Eun-Jung Park
- Department of Biochemistry and Molecular Biology, College of Medicine, Kyung Hee University, 02447, Republic of Korea; Human Health and Environmental Toxins Research Center, Kyung Hee University, 02447, Republic of Korea.
| | - Kexin Li
- Department of Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Min-Sung Kang
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, 02447, Republic of Korea
| | - Jae-Won Choi
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, 02447, Republic of Korea
| | - BoSung Baek
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, 02447, Republic of Korea
| | - Yu-Kyeong Yang
- Department of Biochemistry and Molecular Biology, College of Medicine, Kyung Hee University, 02447, Republic of Korea
| | - Art E Cho
- Department of Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Byoung-Seok Lee
- Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| |
Collapse
|
4
|
Du Y, Li Q, Zhou G, Cai Z, Man Q, Wang WC. Early-life perfluorooctanoic acid exposure disrupts the function of dopamine transporter protein with glycosylation changes implicating the links between decreased dopamine levels and disruptive behaviors in larval zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170408. [PMID: 38281643 DOI: 10.1016/j.scitotenv.2024.170408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
Exposure to perfluorooctanoic acid (PFOA) during early embryonic development is associated with the increased risk of developmental neurotoxicity and neurobehavioral disorders in children. In our previous study, we demonstrated that exposure to PFOA affected locomotor activity and disrupted dopamine-related gene expression in zebrafish larvae. Consequently, we continue to study the dopaminergic system with a focus on dopamine levels and dopamine's effect on behaviors in relation to PFOA exposure. In the present study, we found a decrease in dopamine levels in larval zebrafish. We studied the dopamine transporter (DAT) protein, which is responsible for regulating dopamine levels through the reuptake of dopamine in neuronal cells. We demonstrated that exposure to PFOA disrupted the glycosylation process of DAT, inhibited its uptake function, and induced endoplasmic reticulum (ER) stress in dopaminergic cells. Besides, we conducted a light-dark preference test on larval zebrafish and observed anxiety/depressive-like behavioral changes following exposure to PFOA. Dopamine is one of the most prominent neurotransmitters that significantly influences human behavior, with low dopamine levels being associated with impairments such as anxiety and depression. The anxiety-like response in zebrafish larvae exposure to PFOA implies the link with the reduced dopamine levels. Taken together, we can deduce that glycosylation changes in DAT lead to dysfunction of DAT to regulate dopamine levels, which in turn alters behavior in larval zebrafish. Therefore, alternation in dopamine levels may play a pivotal role in the development of anxiety/depressive-like behavioral changes induced by PFOA.
Collapse
Affiliation(s)
- Yatao Du
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200292, China
| | - Qin Li
- Department of Obstetrics and Gynecology, Shanghai Changhai Hospital, Shanghai 200433, China
| | - Guangdi Zhou
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200292, China
| | - Zhenzhen Cai
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200292, China; Department of Clinical Laboratory, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Qiuhong Man
- Department of Clinical Laboratory, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
| | - Weiye Charles Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200292, China.
| |
Collapse
|