1
|
Wang S, Fang L, Sun X, Lu W. Occurrence and distribution of antibiotic resistance genes in urban rivers with black-odor water of Harbin, China. ENVIRONMENTAL RESEARCH 2024; 259:119497. [PMID: 38944102 DOI: 10.1016/j.envres.2024.119497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/04/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
Antibiotic resistance gene contamination in polluted rivers remains a widely acknowledged environmental issue. This study focused on investigating the contamination conditions of antibiotic resistance genes (ARGs) in Harbin's urban black-odor rivers, specifically Dongfeng Ditch and Hejia Ditch. The research employed a SmartChip Real-Time PCR System to explore the types, abundance, and distribution of ARGs in diverse habitats, such as surface water and sediment. Additionally, the study examined the correlation of ARGs with mobile genetic elements (MGEs) and various environmental factors. It was found that antibiotic resistance genes were prevalent in both water and sediment within the black-odor ditches. The dominant types of ARGs identified included aminoglycoside, sulfonamide, multidrug-resistant, and β-lactam ARGs. Notably, the top four ARGs, in terms of relative abundance, were sul1, fox5, qacEdelta1-01 and aadA1. Most categories of ARGs have significant positive connections with MGEs, indicating that the enrichment and spreading of ARGs in rivers are closely related to MGEs. Based on the correlation analysis, it is found that environmental factors such as dissolved oxygen (DO), ammonia nitrogen (NH4-N), and phosphate (PO4-P) played a substantial role in influencing the variations observed in ARGs. By employing a risk assessment framework based on the human association, host pathogenicity, and mobility of ARGs, the identification of seven high-risk ARGs was achieved. In addition, it is important to assess the environmental risk of ARGs from multiple perspectives (abundance,detection rateand mobility). This study provides a significant reference regarding the presence of ARGs contamination in urban inland black-odor rivers, essential for assessing the health risks associated with ARGs and devising strategies to mitigate the threat of antibiotic resistance.
Collapse
Affiliation(s)
- Shuangshuang Wang
- School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Lanjin Fang
- School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Xingbin Sun
- School of Forestry, Northeast Forestry University, Harbin, 150040, China.
| | - Weimin Lu
- Heilongjiang Province Light Industrial Science Research Institute, Harbin, Heilongjiang, 150010, China
| |
Collapse
|
2
|
Blanco-Peña K, Quesada-Alvarado F, Salas-González D, Estrada-König S, Salom-Pérez R, Arroyo-Arce S, Villalobos-Araya A, Rivera-Castillo J, Martín-Maldonado B, Corrales-Gutiérrez D, Gallardo-Castro V, Gutiérrez-Espeleta G, Chaves A, Esperón F, Chaverri-Fonseca F. A multidisciplinary approach to analyze the antimicrobial resistance in natural ecosystems. ENVIRONMENTAL RESEARCH 2024; 251:118549. [PMID: 38412915 DOI: 10.1016/j.envres.2024.118549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/07/2024] [Accepted: 02/23/2024] [Indexed: 02/29/2024]
Abstract
Antimicrobial Resistance (AMR) poses a global threat to both human health and environmental well-being. Our study delved into Costa Rican wildlife reserves, uncovering a substantial human impact on these ecosystems and underscoring the imperative to pinpoint AMR hotspots. Embracing a One Health perspective, we advocated for a comprehensive landscape analysis that intricately intertwined geographic, climatic, forest, and human factors. This study illuminated the link between laboratory results and observed patterns of antimicrobial use, thereby paving the way for sustainable solutions. Our innovative methodology involved deploying open-ended questions to explore antimicrobial usage across livestock activities, contributing to establishing a comprehensive methodology. Non-invasive sampling in wildlife emerged as a critical aspect, shedding light on areas contaminated by AMR. Feline species, positioned at the apex of the food chain, acted as sentinels for environmental health due to heightened exposure to improperly disposed waste. Regarding laboratory findings, each sample revealed the presence of at least one antimicrobial resistance gene (ARG). Notably, genes encoding resistance to tetracyclines dominated (94.9%), followed by beta-lactams (75.6%), sulfonamides (53.8%), aminoglycosides (51.3%), quinolones (44.9%), phenicols (25.6%), and macrolides (20.5%). Genes encoding polymyxins were not detected. Moreover, 66% of samples carried a multi-resistant microbiome, with 15% exhibiting resistance to three antimicrobial families and 51% to four. The absence of a correlation between forest coverage and ARG presence underscored the profound human impact on wildlife reserves, surpassing previous estimations. This environmental pressure could potentially modify microbiomes and resistomes in unknown ways. As not all antimicrobial families encoding ARGs were utilized by farmers, our next step involved evaluating other human activities to identify the primary sources of contamination. This comprehensive study contributed crucial insights into the intricate dynamics of AMR in natural ecosystems, paving the way for targeted interventions and sustainable coexistence.
Collapse
Affiliation(s)
- Kinndle Blanco-Peña
- Universidad Nacional, Costa Rica. Instituto Regional de Estudios en Sustancias Tóxicas (IRET), Costa Rica.
| | - Francisco Quesada-Alvarado
- Universidad Nacional, Costa Rica. Instituto Regional de Estudios en Sustancias Tóxicas (IRET), Costa Rica
| | - Denis Salas-González
- Universidad Nacional, Costa Rica. Instituto Regional de Estudios en Sustancias Tóxicas (IRET), Costa Rica
| | | | | | | | | | | | - Bárbara Martín-Maldonado
- Veterinary Department, School of Biomedical and Health Sciences, Universidad Europea de Madrid, Spain
| | | | | | | | - Andrea Chaves
- School of Biology, Universidad de Costa Rica, San Pedro, Costa Rica
| | - Fernando Esperón
- Veterinary Department, School of Biomedical and Health Sciences, Universidad Europea de Madrid, Spain
| | - Fabio Chaverri-Fonseca
- Universidad Nacional, Costa Rica. Instituto Regional de Estudios en Sustancias Tóxicas (IRET), Costa Rica
| |
Collapse
|