1
|
Zeng G, Li J, Wang Y, Su J, Lu Z, Zhang F, Ding W. Polystyrene microplastic-induced oxidative stress triggers intestinal barrier dysfunction via the NF-κB/NLRP3/IL-1β/MCLK pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123473. [PMID: 38301820 DOI: 10.1016/j.envpol.2024.123473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/03/2024]
Abstract
Emerging evidence has demonstrated the association between microplastics (MPs) with a diameter of <5 mm and the risk of intestinal diseases. However, the molecular mechanisms contributing to MP-induced intestinal barrier dysfunction have not been fully appreciated. In this study, C57BL/6 J mice were exposed to polystyrene microplastics (PS-MPs, 0.2, 1 or 5 μm) at 1 mg/kg body weight daily by oral gavage for 28 days. We found that PS-MPs exposure induced oxidative stress and inflammatory cell infiltration in mice colon, leading to an increased expression of pro-inflammatory cytokine. Moreover, there were an increase in intestinal permeability and decrease in mucus secretion, accompanied by downregulation of tight junction (TJ)-related zonula occluden-1 (ZO-1), occluding (OCLN) and claudin-1 (CLDN-1) in mice colon. Especially, 5 μm PS-MPs (PS5)-induced intestinal epithelial TJ barrier damage was more severe than 0.2 μm PS-MPs (PS0.2) and 1 μm PS-MPs (PS1). In vitro experiments indicated that PS5-induced oxidative stress upregulated the expression of nuclear factor kappa B (NF-κB), nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome, and myosin light chain kinase (MLCK). Meanwhile, pre-treatment with the antioxidant NAC, NLRP3 inhibitor MCC950 and MLCK inhibitor ML-7 considerably reduced PS5-triggered reactive oxygen species (ROS) production and inflammatory response, inhibited the activation of the NF-κB/NLRP3/MLCK pathway, and upregulated ZO-1, OCLN and CLDN-1 expression in Caco-2 cells. Taken together, our study demonstrated that PS-MPs cause intestinal barrier dysfunction through the ROS-dependent NF-κB/NLRP3/IL-1β/MLCK pathway.
Collapse
Affiliation(s)
- Guodong Zeng
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyi Li
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanli Wang
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingran Su
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhongbing Lu
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Zhang
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjun Ding
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|