Liu Y, Xu G, Han R, Dong J, Ni Y. Identification of d-carbamoylase for biocatalytic cascade synthesis of d-tryptophan featuring high enantioselectivity.
BIORESOURCE TECHNOLOGY 2018;
249:720-728. [PMID:
29096146 DOI:
10.1016/j.biortech.2017.09.162]
[Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 09/19/2017] [Accepted: 09/23/2017] [Indexed: 06/07/2023]
Abstract
In this study, an enantioselective d-carbamoylase (AcHyuC) was identified from Arthrobacter crystallopoietes with optimum pH of 8.5, much more compatible with hydantoinase process than other reported d-N-carbamoylases. AcHyuC has a substrate preference for aromatic carbamoyl-compounds. The dynamic kinetic resolution (DKR) cascade was developed by combining this AcHyuC with hydantoin racemase from Arthrobacter aurescens (AaHyuA) and d-hydantoinase from Agrobacterium tumefaciens (AtHyuH) for enantioselective resolution of l-indolylmethylhydantoin into d-Trp. The optimum pH of DKR cascade reaction was determined to be 8.0, and PEG 400 could facilitate the reaction. As much as 80mM l-indolylmethylhydantoin could be fully converted to d-Trp within 12h at 0.5L scale, with 99.4% yield, >99.9% e.e. and productivity of 36.6gL-1d-1. This study provides a new d-carbamoylase compatible with the DKR cascade for efficient production of optically pure d-Trp from l-indolylmethylhydantoin.
Collapse