1
|
Rolón-Cárdenas GA, Arvizu-Gómez JL, Pacheco-Aguilar JR, Vázquez-Martínez J, Hernández-Morales A. Cadmium-tolerant endophytic Pseudomonas rhodesiae strains isolated from Typha latifolia modify the root architecture of Arabidopsis thaliana Col-0 in presence and absence of Cd. Braz J Microbiol 2021; 52:349-361. [PMID: 33236245 PMCID: PMC7966613 DOI: 10.1007/s42770-020-00408-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/19/2020] [Indexed: 10/22/2022] Open
Abstract
In this work, we isolated four Cd-tolerant endophytic bacteria from Typha latifolia roots that grow at a Cd-contaminated site. Bacterial isolates GRC065, GRC066, GRC093, and GRC140 were identified as Pseudomonas rhodesiae. These bacterial isolates tolerate cadmium and have abilities for phosphate solubilization, siderophore production, indole acetic acid (IAA) synthesis, and ACC deaminase activity, suggesting that they are plant growth-promoting rhizobacteria. Bacterial inoculation in Arabidopsis thaliana seedlings showed that P. rhodesiae strains increase total fresh weight and number of lateral roots concerning non-inoculated plants. These results indicated that P. rhodesiae strains promote A. thaliana seedlings growth by modifying the root system. On the other hand, in A. thaliana seedlings exposed to 2.5 mg/l of Cd, P. rhodesiae strains increased the number and density of lateral roots concerning non-inoculated plants, indicating that they modify the root architecture of A. thaliana seedlings exposed to cadmium. The results showed that P. rhodesiae strains promote the development of lateral roots in A. thaliana seedlings cultivated in both conditions, with and without cadmium. These results suggest that P. rhodesiae strains could exert a similar role inside the roots of T. latifolia that grow in the Cd-contaminated environment.
Collapse
Affiliation(s)
- Gisela Adelina Rolón-Cárdenas
- Posgrado en Ciencias Químicas, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, San Luis Potosí, Mexico
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, Romualdo del Campo 501, Fraccionamiento Rafael Curiel, CP 79060, Ciudad Valles, San Luis Potosí, Mexico
| | - Jackeline Lizzeta Arvizu-Gómez
- Secretaría de Investigación y Posgrado, Centro Nayarita de Innovación y Transferencia de Tecnología (CENITT), Universidad Autónoma de Nayarit, Tepic, Nayarit, Mexico
| | | | - Juan Vázquez-Martínez
- Departamento de Ingeniería Bioquímica, Tecnológico Nacional de México (TecNM), Instituto Tecnológico Superior de Irapuato, Irapuato, Guanajuato, Mexico
| | - Alejandro Hernández-Morales
- Posgrado en Ciencias Químicas, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, San Luis Potosí, Mexico.
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, Romualdo del Campo 501, Fraccionamiento Rafael Curiel, CP 79060, Ciudad Valles, San Luis Potosí, Mexico.
| |
Collapse
|
2
|
Russo CD, Weller DW, Nelson KE, Chivers SJ, Torralba M, Grimes DJ. Bacterial Species Identified on the Skin of Bottlenose Dolphins Off Southern California via Next Generation Sequencing Techniques. MICROBIAL ECOLOGY 2018; 75:303-309. [PMID: 29080910 DOI: 10.1007/s00248-017-1071-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 09/08/2017] [Indexed: 05/21/2023]
Abstract
The dermis of cetaceans is in constant contact with microbial species. Although the skin of the bottlenose dolphin provides adequate defense against most disease-causing microbes, it also provides an environment for microbial community development. Microbial community uniqueness and richness associated with bottlenose dolphin skin is a function of varying habitats and changing environmental conditions. The current study uses ribosomal DNA as a marker to identify bacteria found on the skin of coastal and offshore bottlenose dolphins off of Southern California. The unique microbial communities recovered from these dolphins suggest a greater microbial diversity on the skin of offshore ecotype bottlenose dolphins, while microbial populations associated with the coastal ecotype include species that are more closely related to each other and that suggest exposure to communities that are likely to be associated with terrestrial runoff.
Collapse
Affiliation(s)
- Corey D Russo
- Gulf Coast Research Laboratory, The University of Southern Mississippi, 703 East Beach Drive, Ocean Springs, MS, 39564, USA
- Thermo Fisher Scientific Inc., Clinical Next Gen Sequencing Division, 5781 Van Allen Way, Carlsbad, CA, 92008, USA
| | - David W Weller
- Southwest Fisheries Science Center, Marine Mammal and Turtle Division, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, 8901 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Karen E Nelson
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Susan J Chivers
- Southwest Fisheries Science Center, Marine Mammal and Turtle Division, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, 8901 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Manolito Torralba
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - D Jay Grimes
- Gulf Coast Research Laboratory, The University of Southern Mississippi, 703 East Beach Drive, Ocean Springs, MS, 39564, USA.
| |
Collapse
|
3
|
Yang S, Wen X, Zhao L, Shi Y, Jin H. Crude oil treatment leads to shift of bacterial communities in soils from the deep active layer and upper permafrost along the China-Russia Crude Oil Pipeline route. PLoS One 2014; 9:e96552. [PMID: 24794099 PMCID: PMC4008593 DOI: 10.1371/journal.pone.0096552] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/08/2014] [Indexed: 11/25/2022] Open
Abstract
The buried China-Russia Crude Oil Pipeline (CRCOP) across the permafrost-associated cold ecosystem in northeastern China carries a risk of contamination to the deep active layers and upper permafrost in case of accidental rupture of the embedded pipeline or migration of oil spills. As many soil microbes are capable of degrading petroleum, knowledge about the intrinsic degraders and the microbial dynamics in the deep subsurface could extend our understanding of the application of in-situ bioremediation. In this study, an experiment was conducted to investigate the bacterial communities in response to simulated contamination to deep soil samples by using 454 pyrosequencing amplicons. The result showed that bacterial diversity was reduced after 8-weeks contamination. A shift in bacterial community composition was apparent in crude oil-amended soils with Proteobacteria (esp. α-subdivision) being the dominant phylum, together with Actinobacteria and Firmicutes. The contamination led to enrichment of indigenous bacterial taxa like Novosphingobium, Sphingobium, Caulobacter, Phenylobacterium, Alicylobacillus and Arthrobacter, which are generally capable of degrading polycyclic aromatic hydrocarbons (PAHs). The community shift highlighted the resilience of PAH degraders and their potential for in-situ degradation of crude oil under favorable conditions in the deep soils.
Collapse
Affiliation(s)
- Sizhong Yang
- State Key Laboratory of Frozen Soils Engineering (SKLFSE), Cold and Arid Regions Environmental and Engineering Research Institute (CAREERI), Chinese Academy of Sciences, Lanzhou, Gansu, China
- * E-mail:
| | - Xi Wen
- College of Electrical Engineering, Northwest University for Nationalities, Lanzhou, Gansu, China
| | - Liang Zhao
- State Key Laboratory of Frozen Soils Engineering (SKLFSE), Cold and Arid Regions Environmental and Engineering Research Institute (CAREERI), Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Yulan Shi
- State Key Laboratory of Frozen Soils Engineering (SKLFSE), Cold and Arid Regions Environmental and Engineering Research Institute (CAREERI), Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Huijun Jin
- State Key Laboratory of Frozen Soils Engineering (SKLFSE), Cold and Arid Regions Environmental and Engineering Research Institute (CAREERI), Chinese Academy of Sciences, Lanzhou, Gansu, China
| |
Collapse
|
4
|
Ma J, Xu L, Jia L. Characterization of pyrene degradation by Pseudomonas sp. strain Jpyr-1 isolated from active sewage sludge. BIORESOURCE TECHNOLOGY 2013; 140:15-21. [PMID: 23669098 DOI: 10.1016/j.biortech.2013.03.184] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/27/2013] [Accepted: 03/28/2013] [Indexed: 05/02/2023]
Abstract
Using pyrene as a sole carbon, a new polycyclic aromatic hydrocarbons (PAHs)-degrading bacterial strain was isolated from the active sewage sludge. This strain was identified as Pseudomonas sp. Jpyr-1 by 16S rRNA gene sequence analysis. The maximum degradation rate of pyrene was 3.07 mg L(-1)h(-1) in 48 h incubation with initial pyrene concentration of 200 mg L(-1). Moreover, in binary system consisting of pyrene and another PAH, the enzyme system of Jpyr-1 showed a preference toward pyrene. Furthermore, competitive inhibition of pyrene degradation by other PAH compounds occurred in the binary system. Jpyr-1 could also rapidly degrade other PAHs, such as benzanthracene, chrysene and benzo[a]pyrene. Moreover, several metabolites were detected during pyrene degradation which indicated that Jpyr-1 degraded pyrene through the o-phthalate pathway. Taken together, these results indicated that Pseudomonas sp. Jpyr-1 was a new PAHs-degrading strain that might be useful in the bioremediation of sites contaminated with PAHs.
Collapse
Affiliation(s)
- Jing Ma
- School of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116023, China
| | | | | |
Collapse
|
5
|
Characterization of a polycyclic aromatic hydrocarbon degradation gene cluster in a phenanthrene-degrading Acidovorax strain. Appl Environ Microbiol 2009; 75:2613-20. [PMID: 19270134 DOI: 10.1128/aem.01955-08] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acidovorax sp. strain NA3 was isolated from polycyclic aromatic hydrocarbon (PAH)-contaminated soil that had been treated in a bioreactor and enriched with phenanthrene. The 16S rRNA gene of the isolate possessed 99.8 to 99.9% similarity to the dominant sequences recovered during a previous stable-isotope probing experiment with [U-(13)C]phenanthrene on the same soil (D. R. Singleton, S. N. Powell, R. Sangaiah, A. Gold, L. M. Ball, and M. D. Aitken, Appl. Environ. Microbiol. 71:1202-1209, 2005). The strain grew on phenanthrene as a sole carbon and energy source and could mineralize (14)C from a number of partially labeled PAHs, including naphthalene, phenanthrene, chrysene, benz[a]anthracene, and benzo[a]pyrene, but not pyrene or fluoranthene. Southern hybridizations of a genomic fosmid library with a fragment of the large subunit of the ring-hydroxylating dioxygenase gene from a naphthalene-degrading Pseudomonas strain detected the presence of PAH degradation genes subsequently determined to be highly similar in both nucleotide sequence and gene organization to an uncharacterized Alcaligenes faecalis gene cluster. The genes were localized to the chromosome of strain NA3. To test for gene induction by selected compounds, RNA was extracted from amended cultures and reverse transcribed, and cDNA associated with the enzymes involved in the first three steps of phenanthrene degradation was quantified by quantitative real-time PCR. Expression of each of the genes was induced most strongly by phenanthene and to a lesser extent by naphthalene, but other tested PAHs and PAH metabolites had negligible effects on gene transcript levels.
Collapse
|
6
|
Kim SI, Choi JS, Kahng HY. A proteomics strategy for the analysis of bacterial biodegradation pathways. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2007; 11:280-94. [PMID: 17883339 DOI: 10.1089/omi.2007.0019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Bacterial biodegradation (bioremediation) is the use of microorganisms to break down organic materials into simpler compounds; it plays a pivotal role in the clean-up of hazardous wastes in the environment. Following the completion of genome sequencing in bacteria capable of biodegradation, functional genomic studies have played a major role in obtaining information on bacterial biodegradation pathways. Novel proteomics technologies have recently been developed to make it possible to analyze global protein expression. Proteomics can also provide important information on the life cycle, regulation, and post-translational modification of proteins induced under specific conditions. Proteomics technologies have been applied to the comprehensive study of bacterial biodegradation. In this paper, we introduce the proteomics technologies applicable to bacterial biodegradation studies, review the results of the proteomics analysis of representative biodegrading bacteria, and discuss the potential use of proteomics technologies in future biodegradation studies.
Collapse
Affiliation(s)
- Seung Il Kim
- Proteomics Team, Korea Basic Science Institute, Daejeon, Republic of Korea.
| | | | | |
Collapse
|
7
|
Kim SI, Park SH, Kim JW, Leem SH, Shin DJ, Kim SH, Lee DH, Kahng HY. Peptide mass fingerprinting- and 2-DE/MS-based analysis of the biodegradation potential for monocyclic aromatic hydrocarbons in Pseudomonas sp. Biotechnol Lett 2007; 29:1475-81. [PMID: 17636390 DOI: 10.1007/s10529-007-9443-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 05/31/2007] [Accepted: 05/31/2007] [Indexed: 11/30/2022]
Abstract
The combined analysis of peptide mass fingerprinting and 2-DE/MS using the induced and selected protein spots following growth of Pseudomonas sp. DU102 on benzoate or p-hydroxybenzoate revealed not only alpha- and beta-subunits of protocatechuate 3,4-dioxygenase but also catechol 1,2-dioxygenase responsible for ortho-pathway through ring-cleavage of aromatic compounds. Toluate 1,2-dioxygenase and p-hydroxybenzoate hydroxylase were also identified. Purification of intradiol dioxygenases such as catechol 1,2-dioxygenase and protocatechuate 3,4-dioxygenase from the benzoate or p-hydroxybenzoate culture makes it possible to trace the biodegradation pathway of strain DU102 for monocyclic aromatic hydrocarbons. Interestingly, vanillin-induced protocatechuate 3,4-dioxygenase was identical in amino acid sequences with protocatechuate 3,4-dioxygenase from p-hydroxybenzoate.
Collapse
Affiliation(s)
- Seung Il Kim
- Proteomics Team, Korea Basic Science Institute, Daejeon, 305-333, Korea
| | | | | | | | | | | | | | | |
Collapse
|