1
|
A Novel Actinobacterial Cutinase Containing a Non-Catalytic Polymer-Binding Domain. Appl Environ Microbiol 2021; 88:e0152221. [PMID: 34705546 DOI: 10.1128/aem.01522-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The single putative cutinase-encoding gene from the genome of Kineococcus radiotolerans SRS30216 was cloned and expressed in Escherichia coli as a secreted fusion protein, designated YebF-KrCUT, where YebF is the extracellular carrier protein. The 294-amino acid sequence of KrCUT is unique among currently characterized cutinases by having a C-terminal extension that consists of a short (Pro-Thr)-rich linker and a 55-amino-acid region resembling the substrate binding domain of poly(hydroxybutyrate) (PHB) depolymerases. Phylogenetically, KrCUT takes a unique position among known cutinases and cutinase-like proteins of bacterial and fungal origin. A modeled structure of KrCUT, although displaying a typical α/ß hydrolase fold, shows some unique loops close to the catalytic site. The 39-kDa YebF-KrCUT fusion protein and a truncated variant thereof were purified to electrophoretic homogeneity and functionally characterized. The melting temperatures (Tm) of KrCUT and its variant KrCUT206 devoid of the putative PHB-binding domain were established to be very similar at 50-51°C. Cutinase activity was confirmed by the appearance of characteristic cutin components, C16 and C18 hydroxyl fatty acids, in the mass chromatograms following incubation of KrCUT with apple cutin as substrate. KrCUT also efficiently degraded synthetic polyesters such as polycaprolactone and poly(1,3-propylene adipate). Although incapable of PHB depolymerization, KrCUT could efficiently bind PHB, confirming the predicted characteristic of the C-terminal region. KrCUT also potentiated the activity of pectate lyase in the degradation of pectin from hemp fibres. This synergistic effect is relevant to the enzyme retting process of natural fibres. IMPORTANCE. To date only a limited number of cutinases have been isolated and characterized from nature, the majority being sourced from phytopathogenic fungi and thermophilic bacteria. The significance of our research relates to the identification and characterization of a unique member of microbial cutinases, of name KrCUT, that was derived from the genome of the Gram-positive Kineococcus radiotolerans SRS30216, a highly radiation-resistant actinobacterium. Given the wide-ranging importance of cutinases in applications such as the degradation of natural and synthetic polymers, in the textile industry, in laundry detergents, or in biocatalysis (e.g., transesterification reactions), our results could foster new research leading to broader biotechnological impacts. This study also demonstrated that genome mining or prospecting is a viable means to discover novel biocatalysts as environmentally friendly and biotechnological tool.
Collapse
|
2
|
Abstract
Cutinases (EC 3.1.1.74) are serin esterases that belong to the α/β hydrolases superfamily and present in the Ser-His-Asp catalytic triad. They show characteristics between esterases and lipases. These enzymes hydrolyze esters and triacylglycerols and catalyze esterification and transesterification reactions. Cutinases are synthesize by plant pathogenic fungi, but some bacteria and plants have been found to produce cutinases as well. In nature they facilitate a pathogen’s invasion by hydrolyzing the cuticle that protects plants, but can be also used for saprophytic fungi as a way to nourish themselves. Cutinases can hydrolyze a wide range of substrates like esters, polyesters, triacylglycerols and waxes and that makes this enzyme very attractive for industrial purposes. This work discusses techniques of industrial interest such as immobilization and purification, as well as some of the most important uses of cutinases in industries.
Collapse
|
3
|
Gu S, Liu C, Zhang W, Qu M, Li Y, Zang Y, Xiong X, Pan K, Zhao X. Characteristics of a recombinant Fusarium verticillioides cutinase and its effects on enzymatic hydrolysis of rice straw. Int J Biol Macromol 2021; 171:382-388. [PMID: 33434547 DOI: 10.1016/j.ijbiomac.2021.01.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 11/30/2022]
Abstract
The current study heterologously expressed a cutinase from Fusarium verticillioides by Pichia pastoris and investigated its properties and effects on the hydrolysis of rice straw. The optimal pH and temperature for F. verticillioides cutinase were 8.0 and 50 °C, respectively. F. verticillioides cutinase had poor thermal stability and could be inhibited by some metal ions, inhibitors, and detergents (5 mM), including Ni2+, Zn2+, Cu2+, Ca2+, Mn2+, sodium dodecyl sulfate, EDTA, and Tween-20. F. verticillioides cutinase could tolerate 15% methanol and dimethyl sulfoxide but was significantly repressed by 15% ethanol and acetone with 48% and 63% residual activity, respectively. F. verticillioides cutinase could degrade the cuticle of rice straw with palmitic acid and stearic acid as the main products. However, the dissolving sugars released from the rice straw treated with F. verticillioides cutinase were significantly reduced by 29.2 μg/mL compared with the control (107.9 μg/mL). Similarly, the reducing sugars produced from the cellulase hydrolysis of rice straw pretreated with F. verticillioides cutinase were reduced by 63.5 μg/mL relative to the control (253.6 μg/mL). Scanning electron microscopy results showed that numerous tuberculate or warty protrusions were present nearly everywhere on the surface of rice straw treated with F. verticillioides cutinase, and some protrusions even covered and blocked the stomata of the rice straw surface. Current limited data indicate that F. verticillioides cutinase might not be an appropriate choice for improving the utilization of agricultural straws.
Collapse
Affiliation(s)
- Shuaifeng Gu
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China; College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Chanjuan Liu
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China; College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Wenjing Zhang
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China; College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Mingren Qu
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China; College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Yanjiao Li
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China; College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Yitian Zang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Xiaowen Xiong
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China; College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Ke Pan
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China; College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Xianghui Zhao
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China; College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China.
| |
Collapse
|
4
|
Gururaj P, Khushbu S, Monisha B, Selvakumar N, Chakravarthy M, Gautam P, Nandhini Devi G. Production, purification and application of Cutinase in enzymatic scouring of cotton fabric isolated from Acinetobacter baumannii AU10. Prep Biochem Biotechnol 2020; 51:550-561. [PMID: 33108946 DOI: 10.1080/10826068.2020.1836655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Conventional cotton scouring in the textile industry using alkali results in huge environmental impact which can be overcome by using enzymes. Pectinase along with cutinase gives enhanced bioscouring results. Cutin was extracted from tomato peels and was used as substrate in the microbial media. The strain isolated from tomato peel was identified as Acinetobacter baumannii AU10 by 16S rDNA sequencing. The cutinase production was optimized by Placket-Burman and Response Surface Methodology (RSM) and the maximum production of 82.75 U/mL obtained at sucrose 6.68% (w/v), gelatin 2.74 g/L at a temperature of 35.93 °C. Cutinase was purified by ammonium sulfate precipitation, hydrophobic interaction chromatography and ion exchange chromatography with a recovery of 25.6% and specific activity of 38030 U/mg. The confirmation test for the purity of cutinase was analyzed by RP-HPLC. The molecular mass of cutinase was determined as 28.9 kDa by SDS-PAGE technique. Scanning electron microscopic analysis showed a rough and open primary wall surface on the cutinase bioscoured fabric which confirmed its activity on cutin present in the cotton fabric. Additionally, the cutinase-bioscoured samples showed better absorbency than the untreated samples. Therefore, enzymatic scouring increases wetting capacity of scoured cotton and also helps to reduce environmental pollution.
Collapse
Affiliation(s)
- P Gururaj
- Centre for Food Technology, Department of Biotechnology, Anna University, Chennai, India
| | - S Khushbu
- Centre for Food Technology, Department of Biotechnology, Anna University, Chennai, India
| | - B Monisha
- Centre for Food Technology, Department of Biotechnology, Anna University, Chennai, India
| | - N Selvakumar
- Centre for Food Technology, Department of Biotechnology, Anna University, Chennai, India
| | - M Chakravarthy
- Centre for Food Technology, Department of Biotechnology, Anna University, Chennai, India
| | - P Gautam
- Centre for Food Technology, Department of Biotechnology, Anna University, Chennai, India
| | - G Nandhini Devi
- Centre for Food Technology, Department of Biotechnology, Anna University, Chennai, India
| |
Collapse
|
5
|
Garg G, Singh A, Kaur A, Singh R, Kaur J, Mahajan R. Microbial pectinases: an ecofriendly tool of nature for industries. 3 Biotech 2016; 6:47. [PMID: 28330117 PMCID: PMC4746199 DOI: 10.1007/s13205-016-0371-4] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/23/2015] [Indexed: 11/29/2022] Open
Abstract
Pectinases are the growing enzymes of biotechnological sector, showing gradual increase in their market. They hold a leading position among the commercially produced industrial enzymes. These enzymes are ecofriendly tool of nature that are being used extensively in various industries like wine industry; food industry; paper industry for bleaching of pulp and waste paper recycling; in the processing of fruit–vegetables, tea–coffee, animal feed; extraction of vegetable oil and scouring of plant fibres. Moreover, enzymatic catalysis is preferred over other chemical methods, since it is more specific, less aggressive and saves energy. This is the review which covers the information available on the applicability potential of this group of enzymes in various sectors.
Collapse
Affiliation(s)
- G Garg
- Department of Biotechnology, Maharishi Markendeshwar University, Mullana, Ambala, India
| | - A Singh
- Department of Biotechnology, Kurukshetra University, Kurukshetra, India
| | - A Kaur
- Department of Biotechnology, Kurukshetra University, Kurukshetra, India
| | - R Singh
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - J Kaur
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - R Mahajan
- Department of Biotechnology, Kurukshetra University, Kurukshetra, India.
| |
Collapse
|
6
|
|
7
|
Production of Monomeric Aromatic Compounds from Oil Palm Empty Fruit Bunch Fiber Lignin by Chemical and Enzymatic Methods. BIOMED RESEARCH INTERNATIONAL 2015; 2015:891539. [PMID: 26798644 PMCID: PMC4700166 DOI: 10.1155/2015/891539] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 11/13/2015] [Accepted: 11/30/2015] [Indexed: 12/17/2022]
Abstract
In this study, oil palm empty fruit bunch (OPEFBF) was pretreated with alkali, and lignin was extracted for further degradation into lower molecular weight phenolic compounds using enzymes and chemical means. Efficiency of monomeric aromatic compounds production from OPEFBF lignin via chemical (nitrobenzene versus oxygen) and enzymatic [cutinase versus manganese peroxidase (MnP)] approaches was investigated. The effects of sodium hydroxide concentration (2, 5, and 10% wt.) and reaction time (30, 90, and 180 minutes) on the yield of aromatic compounds were studied. The results obtained indicated that nitrobenzene oxidation produced the highest yield (333.17 ± 49.44 ppm hydroxybenzoic acid, 5.67 ± 0.25 ppm p-hydroxybenzaldehyde, 25.57 ± 1.64 ppm vanillic acid, 168.68 ± 23.23 ppm vanillin, 75.44 ± 6.71 ppm syringic acid, 815.26 ± 41.77 ppm syringaldehyde, 15.21 ± 2.19 ppm p-coumaric acid, and 44.75 ± 3.40 ppm ferulic acid), among the tested methods. High sodium hydroxide concentration (10% wt.) was needed to promote efficient nitrobenzene oxidation. However, less severe oxidation condition was preferred to preserve the hydroxycinnamic acids (p-coumaric acid and ferulic acid). Cutinase-catalyzed hydrolysis was found to be more efficient than MnP-catalyzed oxidation in the production of aromatic compounds. By hydrolyzed 8% wt. of lignin with 0.625 mL cutinase g−1 lignin at pH 8 and 55°C for 24 hours, about 642.83 ± 14.45 ppm hydroxybenzoic acid, 70.19 ± 3.31 ppm syringaldehyde, 22.80 ± 1.04 ppm vanillin, 27.06 ± 1.20 ppm p-coumaric acid, and 50.19 ± 2.23 ppm ferulic acid were produced.
Collapse
|
8
|
Nyyssölä A. Which properties of cutinases are important for applications? Appl Microbiol Biotechnol 2015; 99:4931-42. [DOI: 10.1007/s00253-015-6596-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/02/2015] [Accepted: 04/07/2015] [Indexed: 10/23/2022]
|
9
|
Abstract
As a significant amount of water, chemicals and energy are incurred in the preparation process of cotton materials, the handling of waste water and the associated chemical disposal is costly and the side effects that are resultant of the wastes affect the environment. Cost efficiency and environment protection are emphasized in this generation, and as a result, the textile industry is seeking for more cost saving and environmentally friendly cotton preparation processes as an alternative to conventional wet chemical processing. Moreover, the combination of both physical and chemical treatments will be the trend for future textile processing to achieve the desired fabric properties in a more flexible way. The application of plasma treatment on textile material has been proven successful in altering material performance without affecting its bulk properties, and also plasma treatment has been considered as a potential alternative to the conventional chemical wet treatment. Background information on plasma and the effects of atmospheric pressure plasma treatment on cotton fabrics are reviewed. Comparisons are made between conventional enzyme and plasma desizing.
Collapse
|
10
|
Abdel-Halim ES, Al-Deyab SS, Alfaifi AYA. Cotton fabric finished with β-cyclodextrin: Inclusion ability toward antimicrobial agent. Carbohydr Polym 2013; 102:550-6. [PMID: 24507318 DOI: 10.1016/j.carbpol.2013.11.074] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 11/28/2013] [Accepted: 11/30/2013] [Indexed: 11/27/2022]
Abstract
β-Cyclodextrin was grafted onto cotton fabric through crosslinking with butane tetracarboxylic acid in presence of sodium hypophosphite monohydrate as a catalyst. This finished cotton fabric was loaded with the antimicrobial agent octenidine dihydrochloride. β-Cyclodextrin-grafted cotton fabrics, both after loading with octenidine dihydrochloride or before loading (control) were characterized for their antimicrobial activity against two types of bacteria (Gram positive and Gram negative) and two types of fungi, using the Diffusion Disk Method. The antimicrobial cotton fabric was subjected to several washing cycles and the antimicrobial activity was measured after each washing cycle to examine the durability of this antimicrobial finishing against repeated washing. The measurements showed that the finished cotton fabrics retain reasonable deal of their antimicrobial activity, even after 20 washing cycles. This long-lasting antimicrobial activity is attributed to the hosting ability of the cavities present in cyclodextrin moieties, which host the antimicrobial agent molecules and release them gradually.
Collapse
Affiliation(s)
- E S Abdel-Halim
- Petrochemical Research Chair, Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Salem S Al-Deyab
- Petrochemical Research Chair, Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ali Y A Alfaifi
- Petrochemical Research Chair, Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
11
|
Effects of Thermobifida fusca cutinase-carbohydrate-binding module fusion proteins on cotton bioscouring. BIOTECHNOL BIOPROC E 2011. [DOI: 10.1007/s12257-011-0036-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Abstract
Melting point of cotton waxes and effects of temperature on cotton waxes removal were investigated. Based on these results a temperature control process for cutinase was developed to improve cotton waxes removal: Firstly cotton fabric was treated by cutinase at 70°C for 10 min, and then the treatment temperature was switched to 55°C and kept this temperature till to the end of the treatment. As a result, maximal cotton waxes removal of 67.69% for cutinase and 75.37% for combined enzymes (cutinase with pectinase and cellulase) were achieved, which was 17.96% and 13.88% higher than that of treatment at 55°C for cutinase and combined enzymes respectively. Moreover, the mechanism involved in enhancing cotton waxes removal in temperature control process was also discussed.
Collapse
|
13
|
|
14
|
Modeling and optimization of cutinase production by recombinant Escherichia coli based on statistical experimental designs. KOREAN J CHEM ENG 2010. [DOI: 10.1007/s11814-010-0195-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Wang P, Cui L, Wang Q, Fan X, Zhao X, Wu J. Combined use of mild oxidation and cutinase/lipase pretreatments for enzymatic processing of wool fabrics. Eng Life Sci 2010. [DOI: 10.1002/elsc.200900041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
16
|
Kalantzi S, Mamma D, Kalogeris E, Kekos D. Properties of cotton fabrics treated by protease and its multienzyme combinations. J Appl Polym Sci 2009. [DOI: 10.1002/app.30677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Yan H, Hua Z, Qian G, Wang M, Du G, Chen J. Effect of cutinase on the degradation of cotton seed coat in bio-scouring. BIOTECHNOL BIOPROC E 2009. [DOI: 10.1007/s12257-008-0200-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Agrawal PB, Agrawal PB, Nierstrasz VA, Bouwhuis GH, Warmoeskerken MMCG. Cutinase and pectinase in cotton bioscouring: an innovative and fast bioscouring process. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420802332558] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Wang P, Wang Q, Fan X, Cui L, Yuan J, Chen S, Wu J. Effects of cutinase on the enzymatic shrink-resist finishing of wool fabrics. Enzyme Microb Technol 2009. [DOI: 10.1016/j.enzmictec.2009.01.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Wang Q, Fan X, Yuan J, Wang P, Cui L, Chen J. Optimization of Two‐Step Cotton Scouring with β‐Cyclodextrin and Alkaline Pectinase. Eng Life Sci 2008. [DOI: 10.1002/elsc.200700043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|