1
|
The Use of Saccharomyces cerevisiae Supplemented with Intracellular Magnesium Ions by Means of Pulsed Electric Field (PEF) in the Process of Bread Production. Foods 2022; 11:foods11213496. [DOI: 10.3390/foods11213496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Bread was supplemented with magnesium through an addition of yeasts subjected to the effect of PEF at optimised parameters to obtain the maximum bioaccumulation of magnesium in cells. Bread produced with the use of yeasts supplemented with magnesium by means of PEF was characterised by its highest content, at 39.3 mg/100 g, which was higher by 50% and 24%, respectively, compared to the control bread sample with an admixture of yeasts cultured without any addition of magnesium and with no PEF treatment and to the control bread sample with an admixture of yeasts cultured with an addition of magnesium but no PEF treatment. The addition of yeasts supplemented with magnesium using PEF in bread production did not cause any statistically significant changes in the chemical composition of any of the analysed samples. However, statistically significant changes were noted in the technological properties of breads produced with an admixture of yeasts supplemented with magnesium by means of PEF treatment. An increase of moisture to 54.03 ± 0.29% led to a reduction of the total baking loss. No statistically significant differences were noted in the bread volume in samples K1, K2, and P, varying from 239 to 269 cm3/100 g.
Collapse
|
2
|
Naik RP, Preetam VC, Kumari NN, Raju MVLN, Prakash B, Reddy MR. Effect of Different Zinc Sources and Concentrations on the Biomass Yield of Saccharomyces cerevisiae Yeast. Biol Trace Elem Res 2022; 200:4171-4174. [PMID: 34738226 DOI: 10.1007/s12011-021-02998-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/24/2021] [Indexed: 11/25/2022]
Abstract
Zinc incorporation and the growth of Saccharomyces cerevisiae were investigated in a culture supplemented with three inorganic zinc salts, i.e. zinc sulphate, zinc chloride and zinc nitrate. The cultivation was performed on a yeast extract peptone dextrose (YEPD) broth medium. The growth of yeast was carried out at different concentrations of zinc, i.e. 0, 30, 60, 90 and 120 mg 100 ml-1. It was found that the addition of different zinc sources at 30 mg 100 ml-1 concentration produced higher biomass yield ranging 1.00-1.03 g from 100 ml-1 of cultivation medium, while higher zinc concentration in the medium caused significantly lower yields of yeast biomass. The amount of zinc in yeast cells was determined by an atomic absorption spectrometer (AAS). The highest amount of zinc in yeast cells was achieved when added in the form of zinc sulphate at a concentration of 120 mg 100 ml-1. The increment of intracellular zinc was up to 9889.67 mg kg-1 of biomass.
Collapse
Affiliation(s)
- R Purshotham Naik
- Department of Poultry Science, College of Veterinary Science, Mamnoor, Warangal, Hyderabad, India.
| | - V Chinni Preetam
- Department of Poultry Science, College of Veterinary Science, P. V. Narsimha Rao Telangana Veterinary University, Rajendranagar, Hyderabad, Telangana, India
| | - N Nalini Kumari
- Department of Animal Nutrition, College of Veterinary Science Korutla, Korutla, India
| | - M V L N Raju
- ICAR-Directorate of Poultry Research, Rajendranagar, Hyderabad-30, India
| | - B Prakash
- ICAR-Directorate of Poultry Research, Rajendranagar, Hyderabad-30, India
| | - M R Reddy
- ICAR-Directorate of Poultry Research, Rajendranagar, Hyderabad-30, India
| |
Collapse
|
3
|
Abstract
Fossil fuels are a major contributor to climate change, and as the demand for energy production increases, alternative sources (e.g., renewables) are becoming more attractive. Biofuels such as bioethanol reduce reliance on fossil fuels and can be compatible with the existing fleet of internal combustion engines. Incorporation of biofuels can reduce internal combustion engine (ICE) fleet carbon dioxide emissions. Bioethanol is typically produced via microbial fermentation of fermentable sugars, such as glucose, to ethanol. Traditional feedstocks (e.g., first-generation feedstock) include cereal grains, sugar cane, and sugar beets. However, due to concerns regarding food sustainability, lignocellulosic (second-generation) and algal biomass (third-generation) feedstocks have been investigated. Ethanol yield from fermentation is dependent on a multitude of factors. This review compares bioethanol production from a range of feedstocks, and elaborates on available technologies, including fermentation practices. The importance of maintaining nutrient homeostasis of yeast is also examined. The purpose of this review is to provide industrial producers and policy makers insight into available technologies, yields of bioethanol achieved by current manufacturing practices, and goals for future innovation.
Collapse
|
4
|
Löser C, Kupsch C, Walther T, Hoffmann A. A new approach for balancing the microbial synthesis of ethyl acetate and other volatile metabolites during aerobic bioreactor cultivations. Eng Life Sci 2021; 21:137-153. [PMID: 33716613 PMCID: PMC7923609 DOI: 10.1002/elsc.202000047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/23/2020] [Indexed: 01/05/2023] Open
Abstract
Ethyl acetate is an organic solvent with many industrial applications, currently produced by energy-intensive chemical processes based on fossil carbon resources. Ethyl acetate can be synthesized from renewable sugars by yeasts like Kluyveromyces marxianus in aerobic processes. However, ethyl acetate is highly volatile and thus stripped from aerated cultivation systems which complicate the quantification of the produced ester. Synthesis of volatile metabolites is commonly monitored by repeated analysis of metabolite concentrations in both the gas and liquid phase. In this study, a model-based method for quantifying the synthesis and degradation of volatile metabolites was developed. This quantification of volatiles is solely based on repeatedly measured gas-phase concentrations and allows calculation of reaction rates and yields in high temporal resolution. Parameters required for these calculations were determined in abiotic stripping tests. The developed method was validated for ethyl acetate, ethanol and acetaldehyde which were synthesized by K. marxianus DSM 5422 during an iron-limited batch cultivation; it was shown that the presented method is more precise and less time-consuming than the conventional method. The biomass-specific synthesis rate and the yield of ethyl acetate varied over time and exhibited distinct momentary maxima of 0.50 g g‒1h‒1 and 0.38 g g‒1 at moderate iron limitation.
Collapse
Affiliation(s)
- Christian Löser
- Chair of Bioprocess Engineering, Institute of Natural Materials TechnologyTechnische Universität DresdenDresdenGermany
| | - Christian Kupsch
- Chair of Bioprocess Engineering, Institute of Natural Materials TechnologyTechnische Universität DresdenDresdenGermany
| | - Thomas Walther
- Chair of Bioprocess Engineering, Institute of Natural Materials TechnologyTechnische Universität DresdenDresdenGermany
| | - Andreas Hoffmann
- Chair of Bioprocess Engineering, Institute of Natural Materials TechnologyTechnische Universität DresdenDresdenGermany
| |
Collapse
|
5
|
The Use of Non- Saccharomyces Yeast and Enzymes in Beer Production. ACTA UNIVERSITATIS CIBINIENSIS. SERIES E: FOOD TECHNOLOGY 2020. [DOI: 10.2478/aucft-2020-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The objective of this paper was to test the potential of selected non-Saccharomyces strains for beer production, by using Saccharomyces cerevisiae as a control sample. For some of variants brewing enzymes were added to wort to increase the content of fermentable sugars. The non-Saccharomyces yeasts differed in the fermentation process rate. The basic beer physiochemical parameters were assessed, including: alcohol content, extract, free amino nitrogen, sugars, acidity, colour, and the profile of volatile compounds and metal ions. The use of enzymes caused an increase in alcohol and fusel alcohols concentration in beers obtained. Total acidity, free amine nitrogen content, colour and sugar content indicated that the tested non-Saccharomyces yeast allowed obtaining beers with the proper analytical parameters.
Collapse
|
6
|
García‐Béjar B, Owens RA, Briones A, Arévalo‐Villena M. Differential distribution and proteomic response of
Saccharomyces cerevisiae
and non‐model yeast species to zinc. Environ Microbiol 2020; 22:4633-4646. [DOI: 10.1111/1462-2920.15206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/18/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Beatriz García‐Béjar
- Department of Analytical Chemistry and Food Technology University of Castilla‐La Mancha Ciudad Real 13071 Spain
| | - Rebecca A. Owens
- Department of Biology Maynooth University Maynooth Co. Kildare Ireland
| | - Ana Briones
- Department of Analytical Chemistry and Food Technology University of Castilla‐La Mancha Ciudad Real 13071 Spain
| | - María Arévalo‐Villena
- Department of Analytical Chemistry and Food Technology University of Castilla‐La Mancha Ciudad Real 13071 Spain
| |
Collapse
|
7
|
García-Béjar B, Arévalo-Villena M, Guisantes-Batan E, Rodríguez-Flores J, Briones A. Study of the bioremediatory capacity of wild yeasts. Sci Rep 2020; 10:11265. [PMID: 32647290 PMCID: PMC7347596 DOI: 10.1038/s41598-020-68154-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 06/16/2020] [Indexed: 11/11/2022] Open
Abstract
Microbial detoxification has been proposed as a new alternative for removing toxins and pollutants. In this study, the biodetoxification activities of yeasts against aflatoxin B1 and zinc were evaluated by HPLC and voltammetric techniques. The strains with the best activity were also subjected to complementary assays, namely biocontrol capability and heavy-metal resistance. The results indicate that the detoxification capability is toxin- and strain-dependent and is not directly related to cell growth. Therefore, we can assume that there are some other mechanisms involved in the process, which must be studied in the future. Only 33 of the 213 strains studied were capable of removing over 50% of aflatoxin B1, Rhodotrorula mucilaginosa being the best-performing species detected. As for zinc, there were 39 strains that eliminated over 50% of the heavy metal, with Diutina rugosa showing the best results. Complementary experiments were carried out on the strains with the best detoxification activity. Biocontrol tests against mycotoxigenic moulds showed that almost 50% of strains had an inhibitory effect on growth. Additionally, 53% of the strains grew in the presence of 100 mg/L of zinc. It has been proven that yeasts can be useful tools for biodetoxification, although further experiments must be carried out in order to ascertain the mechanisms involved.
Collapse
Affiliation(s)
- Beatriz García-Béjar
- Department of Analytical Chemistry and Food Technology, University of Castilla-La Mancha, Camilo José Cela Avenue, 13071, Ciudad Real, Spain
| | - María Arévalo-Villena
- Department of Analytical Chemistry and Food Technology, University of Castilla-La Mancha, Camilo José Cela Avenue, 13071, Ciudad Real, Spain.
| | - Eduardo Guisantes-Batan
- Regional Institute of Applied Scientific Investigation (IRICA), University of Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Juana Rodríguez-Flores
- Department of Analytical Chemistry and Food Technology, University of Castilla-La Mancha, Camilo José Cela Avenue, 13071, Ciudad Real, Spain
| | - Ana Briones
- Department of Analytical Chemistry and Food Technology, University of Castilla-La Mancha, Camilo José Cela Avenue, 13071, Ciudad Real, Spain
| |
Collapse
|
8
|
Li Y, Yin Z, Zhang Y, Liu J, Cheng Y, Wang J, Pi F, Zhang Y, Sun X. Perspective of Microbe-based Minerals Fortification in Nutrition Security. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1728308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Ying Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, People’s Republic of China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, People’s Republic of China
| | - Ziye Yin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, People’s Republic of China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, People’s Republic of China
| | - Yuanyuan Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, People’s Republic of China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, People’s Republic of China
| | - Jinghan Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, People’s Republic of China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, People’s Republic of China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, People’s Republic of China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, People’s Republic of China
| | - Jiahua Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, People’s Republic of China
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, People’s Republic of China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, People’s Republic of China
| | - Yinzhi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, People’s Republic of China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, People’s Republic of China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, People’s Republic of China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, People’s Republic of China
| |
Collapse
|
9
|
Pankiewicz U, Góral M, Kozłowicz K, Góral D. Novel method of zinc ions supplementing with fermented and unfermented ice cream with usingPEF. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Urszula Pankiewicz
- Department of Analysis and Food Quality Assessment Faculty of Food Science and Biotechnology University of Life Sciences Skromna 8 20‐704 Lublin Poland
| | - Małgorzata Góral
- Department of Analysis and Food Quality Assessment Faculty of Food Science and Biotechnology University of Life Sciences Skromna 8 20‐704 Lublin Poland
| | - Katarzyna Kozłowicz
- Department of Biological Bases of Food and Feed Technologies Faculty of Production Engineering University of Life Sciences Doświadczalna 44 20‐280 Lublin Poland
| | - Dariusz Góral
- Department of Biological Bases of Food and Feed Technologies Faculty of Production Engineering University of Life Sciences Doświadczalna 44 20‐280 Lublin Poland
| |
Collapse
|
10
|
Improving Fermentation Rate during Use of Corn Grits in Beverage Alcohol Production. BEVERAGES 2019. [DOI: 10.3390/beverages5010005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Corn grits are commonly used adjuncts in the brewing industry in the United States, especially for lager beers. The major challenge of using a high amount of adjuncts in the brewing process is reduced levels of nutrients available to yeast during fermentation, which negatively affects the growth and functioning of yeast, and results in sluggish fermentation. The problem is usually addressed by adding external nutrition. The objective of this work was to assess the suitability of corn components other than brewer’s grits to improve the fermentation rates. Water obtained after soaking of corn germ, a vital source of lipids and soluble proteins, was investigated as a source of nutrient during brewing of 40:60 (w/w) corn grits and malt mixture. Performance of water-soluble nutrients from germ of two corn verities, yellow dent corn and flint corn, was investigated. Germ soak water was added during corn grits slurry formation before mashing. The addition of germ water increased the free amino nitrogen levels by 37% and Zn concentrations by 3.6 times in the wort, which resulted in up to a 28% higher fermentation rate (between 48 to 72 h of fermentation) and shortened the fermentation time from 120 to 96 h. The use of water obtained from the soaking of flint corn germ resulted in a similar shortening of fermentation time. In another approach, nutrient-rich concentrated germ soak water was directly added into the wort, which also resulted in similar improvements in the fermentation rate as those from adding germ soak water during slurry formation. Due to leaching of micronutrients and soluble proteins, the oil concentrations in the germ increased by more than 30%, enhancing its economic value.
Collapse
|
11
|
Góral M, Pankiewicz U, Sujka M, Kowalski R. Bioaccumulation of zinc ions in Lactobacillus rhamnosus B 442 cells under treatment of the culture with pulsed electric field. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-018-3219-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Kordialik‐Bogacka E, Bogdan P, Ciosek A. Effects of quinoa and amaranth on zinc, magnesium and calcium content in beer wort. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.14052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Edyta Kordialik‐Bogacka
- Institute of Fermentation Technology and Microbiology Faculty of Biotechnology and Food Sciences Lodz University of Technology 171/173 Wolczanska Street 90‐924 Lodz Poland
| | - Paulina Bogdan
- Institute of Fermentation Technology and Microbiology Faculty of Biotechnology and Food Sciences Lodz University of Technology 171/173 Wolczanska Street 90‐924 Lodz Poland
| | - Aneta Ciosek
- Faculty of Food Technology University of Agriculture in Krakow 122 Balicka Street 30‐149 Cracow Poland
| |
Collapse
|
13
|
Walker GM, Walker RSK. Enhancing Yeast Alcoholic Fermentations. ADVANCES IN APPLIED MICROBIOLOGY 2018; 105:87-129. [PMID: 30342724 DOI: 10.1016/bs.aambs.2018.05.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The production of ethanol by yeast fermentation represents the largest of all global biotechnologies. Consequently, the yeast Saccharomyces cerevisiae is the world's premier industrial microorganism, which is responsible not only for the production of alcoholic beverages, including beer, wine, and distilled spirits, but also for the billions of liters of bioethanol produced annually for use as a renewable transportation fuel. Although humankind has exploited the fermentative activities of yeasts for millennia, many aspects of alcohol fermentation remain poorly understood. This chapter will review some of the key considerations in optimizing industrial alcohol fermentations with a particular emphasis on enhancement opportunities involving cell physiology and strain engineering of the major microbial ethanologen, the yeast S. cerevisiae.
Collapse
Affiliation(s)
- Graeme M Walker
- School of Science, Engineering & Technology, Abertay University, Dundee, Scotland, United Kingdom
| | - Roy S K Walker
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
14
|
Löser C, Haas C, Liu W, Grahl S, Bley T. Uptake of iron by Kluyveromyces marxianus DSM 5422 cultivated in a whey-based medium. Eng Life Sci 2018; 18:459-474. [PMID: 32624927 DOI: 10.1002/elsc.201700195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/11/2018] [Accepted: 04/17/2018] [Indexed: 12/14/2022] Open
Abstract
The ability of Kluyveromyces marxianus for converting lactose into ethyl acetate offers a chance for the economical reuse of whey. Iron plays a significant role in this process as ester synthesis requires a low intracellular iron content, xFe . The iron content in turn is decreased by growth due to cell expansion and increased by iron uptake. Thus, the iron-uptake rate, ψ, is important for the considered process. Iron uptake by K. marxianus DSM 5422 was studied in aerobic cultivation on a whey-borne medium with varied initial iron content, in part combined with a feed of iron under intensive growth conditions. A possible precipitation of iron that would pretend iron uptake was verified not to have occurred. Regularly measured dissolved iron concentrations, CFe,L , allowed the xFe and ψ parameters to be obtained by model-based iron balancing. The achieved data were used for establishing a ψ(CFe,L , xFe ) model. Mathematical simulations based on this iron-uptake model reproduced the performed cultivation processes. The created iron-uptake model allows for a future predictive system to be developed for the optimization of biotechnological ester production.
Collapse
Affiliation(s)
- Christian Löser
- Chair of Bioprocess Engineering Institute of Natural Materials Technology Technische Universität Dresden Dresden Germany
| | - Christiane Haas
- Chair of Bioprocess Engineering Institute of Natural Materials Technology Technische Universität Dresden Dresden Germany
| | - Wanqiong Liu
- Chair of Bioprocess Engineering Institute of Natural Materials Technology Technische Universität Dresden Dresden Germany
| | - Sebastian Grahl
- Chair of Bioprocess Engineering Institute of Natural Materials Technology Technische Universität Dresden Dresden Germany
| | - Thomas Bley
- Chair of Bioprocess Engineering Institute of Natural Materials Technology Technische Universität Dresden Dresden Germany
| |
Collapse
|
15
|
Steiger MG, Patzschke A, Holz C, Lang C, Causon T, Hann S, Mattanovich D, Sauer M. Impact of glutathione metabolism on zinc homeostasis in Saccharomyces cerevisiae. FEMS Yeast Res 2018; 17:3821179. [PMID: 28505300 DOI: 10.1093/femsyr/fox028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/09/2017] [Indexed: 12/19/2022] Open
Abstract
Zinc is a crucial mineral for all organisms as it is an essential cofactor for the proper function of a plethora of proteins and depletion of zinc causes oxidative stress. Glutathione is the major redox buffering agent in the cell and therefore important for mitigation of the adverse effects of oxidative stress. In mammalian cells, zinc deficiency is accompanied by a glutathione depletion. In the yeast Saccharomyces cerevisiae, the opposite effect is observed: under low zinc conditions, an elevated glutathione concentration is found. The main regulator to overcome zinc deficiency is Zap1p. However, we show that Zap1p is not involved in this glutathione accumulation phenotype. Furthermore, we found that in glutathione-accumulating strains also the metal ion-binding phytochelatin-2, which is an oligomer of glutathione, is accumulated. This increased phytochelatin concentration correlates with a lower free zinc level in the vacuole. These results suggest that phytochelatin is important for zinc buffering in S. cerevisiae and thus explains how zinc homeostasis is connected with glutathione metabolism.
Collapse
Affiliation(s)
- Matthias G Steiger
- ACIB GmbH, Muthgasse 18, 1190 Vienna, Austria.,Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Anett Patzschke
- ACIB GmbH, Muthgasse 18, 1190 Vienna, Austria.,Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Caterina Holz
- Organobalance GmbH, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Christine Lang
- Organobalance GmbH, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Tim Causon
- ACIB GmbH, Muthgasse 18, 1190 Vienna, Austria.,Department of Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Stephan Hann
- ACIB GmbH, Muthgasse 18, 1190 Vienna, Austria.,Department of Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Diethard Mattanovich
- ACIB GmbH, Muthgasse 18, 1190 Vienna, Austria.,Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Michael Sauer
- ACIB GmbH, Muthgasse 18, 1190 Vienna, Austria.,Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
16
|
De Nicola R, Walker GM. Zinc Interactions with Brewing Yeast: Impact on Fermentation Performance. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2011-0909-01] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Raffaele De Nicola
- Yeast Research Group, School of Contemporary Sciences, University of Abertay Dundee, Dundee, Scotland
| | - Graeme M. Walker
- Yeast Research Group, School of Contemporary Sciences, University of Abertay Dundee, Dundee, Scotland
| |
Collapse
|
17
|
Magnesium enriched lactic acid bacteria as a carrier for probiotic ice cream production. Food Chem 2018; 239:1151-1159. [DOI: 10.1016/j.foodchem.2017.07.053] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 01/29/2023]
|
18
|
Góral M, Pankiewicz U. Effect of Pulsed Electric Fields (PEF) on Accumulation of Magnesium in Lactobacillus rhamnosus B 442 Cells. J Membr Biol 2017; 250:565-572. [PMID: 28871398 PMCID: PMC5613034 DOI: 10.1007/s00232-017-9986-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/30/2017] [Indexed: 01/13/2023]
Abstract
The aim of this study was to determine the effect of pulsed electric fields (PEF) on accumulation of magnesium ions in Lactobacillus rhamnosus B 442 cells. Under optimized conditions, this is, on 15 min exposure of the 20 h grown culture to PEF of the 2.0 kV/cm and 20 µs pulse width at concentration 400 μg Mg2+/mL medium, accumulation of magnesium in the biomass reached maximum 4.28 mg/g d.m. Optimization of PEF parameters caused an increase of magnesium concentration in the cells by 220% in comparison to the control not treated with PEF. Bacterial cell biomass enriched with Mg2+ may be an alternative for pharmacological supplementation applied in deficiency of this cation.
Collapse
Affiliation(s)
- Małgorzata Góral
- Department of Analysis and Food Quality Assessment, Faculty of Food Science and Biotechnology, University of Life Sciences, Skromna Street 8, 20-704, Lublin, Poland.
| | - Urszula Pankiewicz
- Department of Analysis and Food Quality Assessment, Faculty of Food Science and Biotechnology, University of Life Sciences, Skromna Street 8, 20-704, Lublin, Poland
| |
Collapse
|
19
|
Effect of pulsed electric fields (PEF) on accumulation of selenium and zinc ions in Saccharomyces cerevisiae cells. Food Chem 2016; 221:1361-1370. [PMID: 27979101 DOI: 10.1016/j.foodchem.2016.11.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/06/2016] [Accepted: 11/03/2016] [Indexed: 12/19/2022]
Abstract
The cultures of Saccharomyces cerevisiae were treated with pulsed electric fields (PEF) in order to obtain a maximum accumulation of selenium and zinc ions (simultaneously) in the biomass. The following concentrations: 100μgSe/ml and 150μgZn/ml medium were assumed to be optimal for the maximum accumulation of these ions, that is 43.07mg/gd.m. for selenium and 14.48mg/gd.m. for zinc, in the cultures treated with PEF. At optimal PEF parameters: electric field strength of 3kV/cm and pulse width of 10μs after the treatment of 20-h culture for 10min, the maximum accumulation of both ions in the yeast cells was observed. Application of PEF caused the increase of ions accumulation by 65% for selenium and 100% for zinc. Optimization of PEF parameters led to the further rise in the both ions accumulation resulting in over 2-fold and 2.5-fold higher concentration of selenium and zinc.
Collapse
|
20
|
Pankiewicz U, Sujka M, Jamroz J. Bioaccumulation of the Selected Metal Ions in Saccharomyces cerevisiae Cells Under Treatment of the Culture with Pulsed Electric Field (PEF). J Membr Biol 2015; 248:943-9. [PMID: 26403528 DOI: 10.1007/s00232-015-9844-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 09/18/2015] [Indexed: 11/26/2022]
Abstract
The obtained results demonstrated an influence of PEF on increase in accumulation of various ions in S. cerevisiae cells. Optimization of particular PEF parameters and ions concentrations in the medium caused twofold increase in accumulation of magnesium and zinc ions and 3.5-fold higher accumulation of calcium ions in the cells. In the case of ion couple, accumulation of magnesium and zinc was, respectively, 1.5-fold and twofold higher in comparison to the control cultures. Yeast cells biomass enriched with Mg(2+), Zn(2+), Ca(2+) as well as Mg(2+) and Zn(2+) (simultaneously) may be an alternative for pharmacological supplementation applied in deficiency of these cations.
Collapse
Affiliation(s)
- Urszula Pankiewicz
- Faculty of Food Science and Biotechnology, Department of Analysis and Evaluation of Food Quality, University of Life Sciences, Skromna 8, 20-704, Lublin, Poland.
| | - Monika Sujka
- Faculty of Food Science and Biotechnology, Department of Analysis and Evaluation of Food Quality, University of Life Sciences, Skromna 8, 20-704, Lublin, Poland
| | - Jerzy Jamroz
- Faculty of Food Science and Biotechnology, Department of Analysis and Evaluation of Food Quality, University of Life Sciences, Skromna 8, 20-704, Lublin, Poland
| |
Collapse
|
21
|
Urszula P, Jerzy J, Sujka M, Kowalski R. Visualization of calcium and zinc ions in Saccharomyces cerevisiae cells treated with PEFs (pulse electric fields) by laser confocal microscopy. Food Chem 2015; 188:16-23. [PMID: 26041158 DOI: 10.1016/j.foodchem.2015.04.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/20/2015] [Accepted: 04/25/2015] [Indexed: 11/18/2022]
Abstract
The aim of the present work was to visualize the areas of increased concentration of calcium and zinc ions inside Saccharomyces cerevisiae cells with the use of confocal microscopy and to make an attempt to asses semi-quantitatively their concentration within the limits of the cells. Semi-quantitative analysis revealed that fluorescence inside cells from control samples was three-times lower than that observed for cells from the sample enriched with calcium. Differences in distribution of fluorescence intensity between cells originated from the samples enriched with zinc and control samples were also observed. On the basis of the optical sections, the 3D reconstructions of ion-rich areas distribution in the cell were made. The obtained results showed that confocal microscopy is a useful technique for visualization of the areas in S. cerevisiae cells which contain higher amount of calcium and zinc and it may be also used for semi-quantitative analysis.
Collapse
Affiliation(s)
- Pankiewicz Urszula
- Department of Analysis and Evaluation of Food Quality, Faculty of Food Science and Biotechnology, University of Life Sciences, Skromna 8, 20-704 Lublin, Poland.
| | - Jamroz Jerzy
- Department of Analysis and Evaluation of Food Quality, Faculty of Food Science and Biotechnology, University of Life Sciences, Skromna 8, 20-704 Lublin, Poland
| | - Monika Sujka
- Department of Analysis and Evaluation of Food Quality, Faculty of Food Science and Biotechnology, University of Life Sciences, Skromna 8, 20-704 Lublin, Poland
| | - Radosław Kowalski
- Department of Analysis and Evaluation of Food Quality, Faculty of Food Science and Biotechnology, University of Life Sciences, Skromna 8, 20-704 Lublin, Poland
| |
Collapse
|
22
|
Pankiewicz U, Sujka M, Włodarczyk-Stasiak M, Mazurek A, Jamroz J. Effect of pulse electric fields (PEF) on accumulation of magnesium and zinc ions in Saccharomyces cerevisiae cells. Food Chem 2014; 157:125-31. [PMID: 24679761 DOI: 10.1016/j.foodchem.2014.02.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 01/17/2014] [Accepted: 02/05/2014] [Indexed: 10/25/2022]
Abstract
Cultures of Saccharomyces cerevisiae were treated with PEF to improve simultaneous accumulation of magnesium and zinc ions in the biomass. The results showed that the ions concentration in the medium and their mutual interactions affect accumulation in cells. Increasing the concentration of one ion in the medium reduced the accumulation of the second one, in the control as well as in the cells treated with PEF. Under optimized conditions, that is, on 15 min exposure of the 20 h grown culture to PEF of 5.0 kV/cm and 20 μs pulse width, accumulation of magnesium and zinc in yeast biomass reached maximum levels of 2.85 and 11.41 mg/gd.m., respectively, To summarize, optimization of ion pair concentration and PEF parameters caused a 1.5 or 2-fold increase of magnesium and zinc accumulation, respectively, in S. cerevisiae.
Collapse
Affiliation(s)
- Urszula Pankiewicz
- Department of Analysis and Evaluation of Food Quality, Faculty of Food Science and Biotechnology, University of Life Sciences, Skromna Street 8, 20-704 Lublin, Poland.
| | - Monika Sujka
- Department of Analysis and Evaluation of Food Quality, Faculty of Food Science and Biotechnology, University of Life Sciences, Skromna Street 8, 20-704 Lublin, Poland
| | - Marzena Włodarczyk-Stasiak
- Department of Analysis and Evaluation of Food Quality, Faculty of Food Science and Biotechnology, University of Life Sciences, Skromna Street 8, 20-704 Lublin, Poland
| | - Artur Mazurek
- Department of Analysis and Evaluation of Food Quality, Faculty of Food Science and Biotechnology, University of Life Sciences, Skromna Street 8, 20-704 Lublin, Poland
| | - Jerzy Jamroz
- Department of Analysis and Evaluation of Food Quality, Faculty of Food Science and Biotechnology, University of Life Sciences, Skromna Street 8, 20-704 Lublin, Poland
| |
Collapse
|
23
|
Abstract
Brewing beer involves microbial activity at every stage, from raw material production and malting to stability in the package. Most of these activities are desirable, as beer is the result of a traditional food fermentation, but others represent threats to the quality of the final product and must be controlled actively through careful management, the daily task of maltsters and brewers globally. This review collates current knowledge relevant to the biology of brewing yeast, fermentation management, and the microbial ecology of beer and brewing.
Collapse
Affiliation(s)
- Nicholas A. Bokulich
- Department of Food Science and Technology, University of California, Davis, California, USA
- Department of Viticulture and Enology, University of California, Davis, California, USA
| | - Charles W. Bamforth
- Department of Food Science and Technology, University of California, Davis, California, USA
| |
Collapse
|
24
|
Urit T, Manthey R, Bley T, Löser C. Formation of ethyl acetate byKluyveromyces marxianuson whey: Influence of aeration and inhibition of yeast growth by ethyl acetate. Eng Life Sci 2013. [DOI: 10.1002/elsc.201200077] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Thanet Urit
- Institute of Food Technology and Bioprocess Engineering; Dresden University of Technology; Dresden; Germany
| | - Rene Manthey
- Institute of Food Technology and Bioprocess Engineering; Dresden University of Technology; Dresden; Germany
| | - Thomas Bley
- Institute of Food Technology and Bioprocess Engineering; Dresden University of Technology; Dresden; Germany
| | - Christian Löser
- Institute of Food Technology and Bioprocess Engineering; Dresden University of Technology; Dresden; Germany
| |
Collapse
|
25
|
Formation of ethyl acetate from whey by Kluyveromyces marxianus on a pilot scale. J Biotechnol 2013; 163:17-23. [DOI: 10.1016/j.jbiotec.2012.10.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 10/10/2012] [Accepted: 10/12/2012] [Indexed: 11/18/2022]
|
26
|
Formation of ethyl acetate by Kluyveromyces marxianus on whey during aerobic batch and chemostat cultivation at iron limitation. Appl Microbiol Biotechnol 2012; 96:685-96. [PMID: 22695802 DOI: 10.1007/s00253-012-4205-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 05/22/2012] [Accepted: 05/22/2012] [Indexed: 10/28/2022]
Abstract
The ability of Kluyveromyces marxianus to convert lactose into ethyl acetate offers a chance for an economic reuse of whey. Former experiments with K. marxianus DSM 5422 proved limitation of growth by iron (Fe) or copper as a precondition for significant ester synthesis. Several aerobic batch and chemostat cultivations were done with whey-borne media of a variable Fe content for exploring the effect of Fe on growth, the Fe content of biomass, and metabolite synthesis. At low Fe doses, Fe was the growth-limiting factor, the available Fe was completely absorbed by the yeasts, and the biomass formation linearly depended on the Fe dose governed by a minimum Fe content in the yeasts, x (Fe,min). At batch conditions, x (Fe,min) was 8.8 μg/g, while during chemostat cultivation at D = 0.15 h(-1), it was 23 μg/g. At high Fe doses, sugar was the growth-limiting factor, Fe was more or less absorbed, and the formed biomass became constant. Significant amounts of ethyl acetate were only formed at Fe limitation while high Fe doses suppressed ester formation. Analysis of formed metabolites such as glycerol, pyruvate, acetate, ethanol, ethyl acetate, isocitrate, 2-oxoglutarate, succinate, and malate during chemostat cultivation allowed some interpretation of the Fe-dependent mechanism of ester synthesis; formation of ethyl acetate from acetyl-SCoA and ethanol is obviously initiated by a diminished metabolic flux of acetyl-SCoA into the citrate cycle and by a limited oxidation of NADH in the respiratory chain since Fe is required for the function of aconitase, succinate dehydrogenase, and the electron-transferring proteins.
Collapse
|
27
|
Gibson BR. 125th Anniversary Review: Improvement of Higher Gravity Brewery Fermentation via Wort Enrichment and Supplementation. JOURNAL OF THE INSTITUTE OF BREWING 2012. [DOI: 10.1002/j.2050-0416.2011.tb00472.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
Nicola R, Hall N, Melville SG, Walker GM. Influence of Zinc on Distiller's Yeast: Cellular Accumulation of Zinc and Impact on Spirit Congeners. JOURNAL OF THE INSTITUTE OF BREWING 2012. [DOI: 10.1002/j.2050-0416.2009.tb00379.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
29
|
Zhao XQ, Bai FW. Zinc and yeast stress tolerance: Micronutrient plays a big role. J Biotechnol 2012; 158:176-83. [DOI: 10.1016/j.jbiotec.2011.06.038] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 06/20/2011] [Accepted: 06/29/2011] [Indexed: 10/18/2022]
|
30
|
Zinc - effect on the spring barleyʼs plant and roots growth, grain technological quality, and yeast fermentation. KVASNY PRUMYSL 2010. [DOI: 10.18832/kp2010021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Current awareness on yeast. Yeast 2009. [DOI: 10.1002/yea.1623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|