1
|
A Novel Actinobacterial Cutinase Containing a Non-Catalytic Polymer-Binding Domain. Appl Environ Microbiol 2021; 88:e0152221. [PMID: 34705546 DOI: 10.1128/aem.01522-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The single putative cutinase-encoding gene from the genome of Kineococcus radiotolerans SRS30216 was cloned and expressed in Escherichia coli as a secreted fusion protein, designated YebF-KrCUT, where YebF is the extracellular carrier protein. The 294-amino acid sequence of KrCUT is unique among currently characterized cutinases by having a C-terminal extension that consists of a short (Pro-Thr)-rich linker and a 55-amino-acid region resembling the substrate binding domain of poly(hydroxybutyrate) (PHB) depolymerases. Phylogenetically, KrCUT takes a unique position among known cutinases and cutinase-like proteins of bacterial and fungal origin. A modeled structure of KrCUT, although displaying a typical α/ß hydrolase fold, shows some unique loops close to the catalytic site. The 39-kDa YebF-KrCUT fusion protein and a truncated variant thereof were purified to electrophoretic homogeneity and functionally characterized. The melting temperatures (Tm) of KrCUT and its variant KrCUT206 devoid of the putative PHB-binding domain were established to be very similar at 50-51°C. Cutinase activity was confirmed by the appearance of characteristic cutin components, C16 and C18 hydroxyl fatty acids, in the mass chromatograms following incubation of KrCUT with apple cutin as substrate. KrCUT also efficiently degraded synthetic polyesters such as polycaprolactone and poly(1,3-propylene adipate). Although incapable of PHB depolymerization, KrCUT could efficiently bind PHB, confirming the predicted characteristic of the C-terminal region. KrCUT also potentiated the activity of pectate lyase in the degradation of pectin from hemp fibres. This synergistic effect is relevant to the enzyme retting process of natural fibres. IMPORTANCE. To date only a limited number of cutinases have been isolated and characterized from nature, the majority being sourced from phytopathogenic fungi and thermophilic bacteria. The significance of our research relates to the identification and characterization of a unique member of microbial cutinases, of name KrCUT, that was derived from the genome of the Gram-positive Kineococcus radiotolerans SRS30216, a highly radiation-resistant actinobacterium. Given the wide-ranging importance of cutinases in applications such as the degradation of natural and synthetic polymers, in the textile industry, in laundry detergents, or in biocatalysis (e.g., transesterification reactions), our results could foster new research leading to broader biotechnological impacts. This study also demonstrated that genome mining or prospecting is a viable means to discover novel biocatalysts as environmentally friendly and biotechnological tool.
Collapse
|
2
|
Pirillo V, Pollegioni L, Molla G. Analytical methods for the investigation of enzyme-catalyzed degradation of polyethylene terephthalate. FEBS J 2021; 288:4730-4745. [PMID: 33792200 PMCID: PMC8453989 DOI: 10.1111/febs.15850] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/03/2021] [Accepted: 03/29/2021] [Indexed: 01/11/2023]
Abstract
The polyester PET (poly(ethylene terephthalate)) plastic is chemically inert and remarkably persistent, posing relevant and global pollution concerns due to its accumulation in ecosystems across the globe. In past years, research focused on identifying bacteria active on PET and on the specific enzymes responsible for its degradation. Here, the enzymatic degradation of PET can be considered as an 'erosion process' that takes place on the surface of an insoluble material and results in an unusual, substrate-limited kinetic condition. In this review, we report on the most suitable models to evaluate the kinetics of PET-hydrolyzing enzymes, which takes into consideration the amount of enzyme adsorbed on the substrate, the enzyme-accessible ester bonds, and the product inhibition effects. Careful kinetic analysis is especially relevant to compare enzymes from different sources and evolved variants generated by protein engineering studies as well. Furthermore, the analytical methods most suitable to screen natural bacteria and recombinant variant libraries generated by protein engineering have been also reported. These methods rely on different detection systems and are performed both on model compounds and on different PET samples (e.g., nanoparticles, microparticles, and waste products). All this meaningful information represents an optimal starting point and boosts the process of identifying systems able to biologically recycle PET waste products.
Collapse
Affiliation(s)
- Valentina Pirillo
- The Protein Factory 2.0’Dipartimento di Biotecnologie e Scienze della VitaUniversità degli Studi dell'InsubriaVareseItaly
| | - Loredano Pollegioni
- The Protein Factory 2.0’Dipartimento di Biotecnologie e Scienze della VitaUniversità degli Studi dell'InsubriaVareseItaly
| | - Gianluca Molla
- The Protein Factory 2.0’Dipartimento di Biotecnologie e Scienze della VitaUniversità degli Studi dell'InsubriaVareseItaly
| |
Collapse
|
3
|
Bischoff F, Giersberg M, Matthes F, Schwalenberg T, Worch S, Kunze G. Selection of the Optimal Yeast Host for the Synthesis of Recombinant Enzymes. Methods Mol Biol 2019; 1923:113-132. [PMID: 30737737 DOI: 10.1007/978-1-4939-9024-5_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Yeasts, like Arxula adeninivorans, Hansenula polymorpha, Pichia pastoris, Debaryomyces hansenii, Debaryomyces polymorphus, Schwanniomyces occidentalis, Yarrowia lipolytica, and Saccharomyces cerevisiae are frequently used producers of recombinant enzymes, particularly when posttranslational modifications are mandatory to obtain full functionality. The wide-range transformation/expression platform presented in this chapter can be used to select the optimal yeast host for high-level synthesis of the desired enzyme with favorable biochemical properties. This platform is composed of a selection marker and up to four expression modules in a linearized cassette. Here we describe the protocols for the assembly as well as the transformation of yeast strains with the respective cassettes, screening of transformants, the isolation and biochemical characterization of the enzymes, and finally a simple fermentation strategy to achieve maximal yields of the chosen recombinant enzyme.
Collapse
Affiliation(s)
- Felix Bischoff
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Martin Giersberg
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Falko Matthes
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Tobias Schwalenberg
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Sebastian Worch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Gotthard Kunze
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.
| |
Collapse
|
4
|
Three New Cutinases from the Yeast Arxula adeninivorans That Are Suitable for Biotechnological Applications. Appl Environ Microbiol 2015; 81:5497-510. [PMID: 26048925 DOI: 10.1128/aem.00894-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/29/2015] [Indexed: 02/06/2023] Open
Abstract
The genes ACUT1, ACUT2, and ACUT3, encoding cutinases, were selected from the genomic DNA of Arxula adeninivorans LS3. The alignment of the amino acid sequences of these cutinases with those of other cutinases or cutinase-like enzymes from different fungi showed that they all had a catalytic S-D-H triad with a conserved G-Y-S-Q-G domain. All three genes were overexpressed in A. adeninivorans using the strong constitutive TEF1 promoter. Recombinant 6× His (6h)-tagged cutinase 1 protein (p) from A. adeninivorans LS3 (Acut1-6hp), Acut2-6hp, and Acut3-6hp were produced and purified by immobilized-metal ion affinity chromatography and biochemically characterized using p-nitrophenyl butyrate as the substrate for standard activity tests. All three enzymes from A. adeninivorans were active from pH 4.5 to 6.5 and from 20 to 30°C. They were shown to be unstable under optimal reaction conditions but could be stabilized using organic solvents, such as polyethylene glycol 200 (PEG 200), isopropanol, ethanol, or acetone. PEG 200 (50%, vol/vol) was found to be the best stabilizing agent for all of the cutinases, and acetone greatly increased the half-life and enzyme activity (up to 300% for Acut3-6hp). The substrate spectra for Acut1-6hp, Acut2-6hp, and Acut3-6hp were quite similar, with the highest activity being for short-chain fatty acid esters of p-nitrophenol and glycerol. Additionally, they were found to have polycaprolactone degradation activity and cutinolytic activity against cutin from apple peel. The activity was compared with that of the 6× His-tagged cutinase from Fusarium solani f. sp. pisi (FsCut-6hp), also expressed in A. adeninivorans, as a positive control. A fed-batch cultivation of the best Acut2-6hp-producing strain, A. adeninivorans G1212/YRC102-ACUT2-6H, was performed and showed that very high activities of 1,064 U ml(-1) could be achieved even with a nonoptimized cultivation procedure.
Collapse
|
5
|
Nyyssölä A, Pihlajaniemi V, Häkkinen M, Kontkanen H, Saloheimo M, Nakari-Setälä T. Cloning and characterization of a novel acidic cutinase from Sirococcus conigenus. Appl Microbiol Biotechnol 2014; 98:3639-50. [PMID: 24121867 DOI: 10.1007/s00253-013-5293-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 09/23/2013] [Accepted: 09/26/2013] [Indexed: 11/28/2022]
Abstract
A cutinase gene (ScCut1) was amplified by PCR from the genomic DNA of the ascomycetous plant pathogen Sirococcous conigenus VTT D-04989 using degenerate primers designed on the basis of conserved segments of known cutinases and cutinase-like enzymes. No introns or N- or O-glycosylation sites could be detected by analysis of the ScCut1 gene sequence. The alignment of ScCut1 with other fungal cutinases indicated that ScCut1 contained the conserved motif G-Y-S-Q-G surrounding the active site serine as well as the aspartic acid and histidine residues of the cutinase active site. The gene was expressed in Pichia pastoris, and the recombinantly produced ScCut1 enzyme was purified to homogeneity by immobilized metal affinity chromatography exploiting a C-terminal His-tag translationally fused to the protein. The purified ScCut1 exhibited activity at acidic pH. The K(m) and V(max) values determined for pNP-butyrate esterase activity at pH 4.5 were 1.7 mM and 740 nkat mg⁻¹, respectively. Maximal activities were determined at between pH 4.7 and 5.2 and at between pH 4.1 and 4.6 with pNP-butyrate and tritiated cutin as the substrates, respectively. With both substrates, the enzyme was active over a broad pH range (between pH 3.0 and 7.5). Activity could still be detected at pH 3.0 both with tritiated cutin and with p-nitrophenyl butyrate (relative activity of 25 %) as the substrates. ScCut1 showed activity towards shorter (C2 to C3) fatty acid esters of p-nitrophenol than towards longer ones. Circular dichroism analysis suggested that the denaturation of ScCut1 by heating the protein sample to 80 °C was to a great extent reversible.
Collapse
|
6
|
Roussel A, Amara S, Nyyssölä A, Mateos-Diaz E, Blangy S, Kontkanen H, Westerholm-Parvinen A, Carrière F, Cambillau C. A Cutinase from Trichoderma reesei with a lid-covered active site and kinetic properties of true lipases. J Mol Biol 2014; 426:3757-3772. [PMID: 25219509 DOI: 10.1016/j.jmb.2014.09.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/02/2014] [Accepted: 09/04/2014] [Indexed: 02/05/2023]
Abstract
Cutinases belong to the α/β-hydrolase fold family of enzymes and degrade cutin and various esters, including triglycerides, phospholipids and galactolipids. Cutinases are able to degrade aggregated and soluble substrates because, in contrast with true lipases, they do not have a lid covering their catalytic machinery. We report here the structure of a cutinase from the fungus Trichoderma reesei (Tr) in native and inhibitor-bound conformations, along with its enzymatic characterization. A rare characteristic of Tr cutinase is its optimal activity at acidic pH. Furthermore, Tr cutinase, in contrast with classical cutinases, possesses a lid covering its active site and requires the presence of detergents for activity. In addition to the presence of the lid, the core of the Tr enzyme is very similar to other cutinase cores, with a central five-stranded β-sheet covered by helices on either side. The catalytic residues form a catalytic triad involving Ser164, His229 and Asp216 that is covered by the two N-terminal helices, which form the lid. This lid opens in the presence of surfactants, such as β-octylglucoside, and uncovers the catalytic crevice, allowing a C11Y4 phosphonate inhibitor to bind to the catalytic serine. Taken together, these results reveal Tr cutinase to be a member of a new group of lipolytic enzymes resembling cutinases but with kinetic and structural features of true lipases and a heightened specificity for long-chain triglycerides.
Collapse
Affiliation(s)
- Alain Roussel
- Architecture et Fonction des Macromolécules Biologiques, Aix Marseille Université, 13284 Marseille Cedex 09, France; Architecture et Fonction des Macromolécules Biologiques, UMR7257, Centre National de la Recherche Scientifique, 13288 Marseille Cedex 09, France
| | - Sawsan Amara
- Aix Marseille Université, UMR7282, Centre National de la Recherche Scientifique, 13402 Marseille Cedex 20, France
| | - Antti Nyyssölä
- VTT Biotechnology, P. O. Box 1000, FIN-02044 VTT, Finland
| | - Eduardo Mateos-Diaz
- Aix Marseille Université, UMR7282, Centre National de la Recherche Scientifique, 13402 Marseille Cedex 20, France
| | - Stéphanie Blangy
- Architecture et Fonction des Macromolécules Biologiques, Aix Marseille Université, 13284 Marseille Cedex 09, France; Architecture et Fonction des Macromolécules Biologiques, UMR7257, Centre National de la Recherche Scientifique, 13288 Marseille Cedex 09, France
| | | | | | - Frédéric Carrière
- Aix Marseille Université, UMR7282, Centre National de la Recherche Scientifique, 13402 Marseille Cedex 20, France
| | - Christian Cambillau
- Architecture et Fonction des Macromolécules Biologiques, Aix Marseille Université, 13284 Marseille Cedex 09, France; Architecture et Fonction des Macromolécules Biologiques, UMR7257, Centre National de la Recherche Scientifique, 13288 Marseille Cedex 09, France.
| |
Collapse
|
7
|
Nyyssölä A, Pihlajaniemi V, Järvinen R, Mikander S, Kontkanen H, Kruus K, Kallio H, Buchert J. Screening of microbes for novel acidic cutinases and cloning and expression of an acidic cutinase from Aspergillus niger CBS 513.88. Enzyme Microb Technol 2013; 52:272-8. [PMID: 23540930 DOI: 10.1016/j.enzmictec.2013.01.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/08/2013] [Accepted: 01/09/2013] [Indexed: 11/18/2022]
Abstract
Isolates from gardening waste compost and 38 culture collection microbes were grown on agar plates at pH 4.0 with the cutinase model substrate polycaprolactone as a carbon source. The strains showing polycaprolactone hydrolysis were cultivated in liquid at acidic pH and the cultivations were monitored by assaying the p-nitrophenyl butyrate esterase activities. Culture supernatants of four strains were analyzed for the hydrolysis of tritiated apple cutin at different pHs. Highest amounts of radioactive hydrolysis products were detected at pHs below 5. The hydrolysis of apple cutin by the culture supernatants at acidic pH was further confirmed by GC-MS analysis of the hydrolysis products. On the basis of screening, the acidic cutinase from Aspergillus niger CBS 513.88 was chosen for heterogeneous production in Pichia pastoris and for analysis of the effects of pH on activity and stability. The recombinant enzyme showed activity over a broad range of pHs with maximal activity between pH 5.0 and 6.5. Activity could be detected still at pH 3.5.
Collapse
Affiliation(s)
- Antti Nyyssölä
- VTT Biotechnology, P.O. Box 1000, FIN-02044 VTT, Finland.
| | | | | | | | | | | | | | | |
Collapse
|