1
|
Xia Y, Zhao J, Saeed M, Hussain N, Chen X, Guo Z, Yong Y, Chen H. Molecular Modification Strategies of Nitrilase for Its Potential Application in Agriculture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15106-15121. [PMID: 38949086 DOI: 10.1021/acs.jafc.4c03388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Some feed source plants will produce secondary metabolites such as cyanogenic glycosides during metabolism, which will produce some poisonous nitrile compounds after hydrolysis and remain in plant tissues. The consumption of feed-source plants without proper treatment affect the health of the animals' bodies. Nitrilases can convert nitriles and have been used in industry as green biocatalysts. However, due to their bottleneck problems, their application in agriculture is still facing challenges. Acid-resistant nitrilase preparations, high-temperature resistance, antiprotease activity, strong activity, and strict reaction specificity urgently need to be developed. In this paper, the application potential of nitrilase in agriculture, especially in feed processing industry was explored, the source properties and catalytic mechanism of nitrilase were reviewed, and modification strategies for nitrilase application in agriculture were proposed to provide references for future research and application of nitrilase in agricultural and especially in the biological feed scene.
Collapse
Affiliation(s)
- Yutong Xia
- School of the Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| | - Jia Zhao
- School of the Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| | - Muhammad Saeed
- School of the Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
- Department of Poultry Science, Faculty of Animal Production and Technology, The Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan
| | - Nazar Hussain
- School of the Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| | - Xihua Chen
- School of the Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| | - Zhongjian Guo
- School of the Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| | - Yangchun Yong
- Biofuels Institute, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| | - Huayou Chen
- School of the Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| |
Collapse
|
2
|
Bhalla TC, Thakur N, Kumar V. Arylacetonitrilases: Potential Biocatalysts for Green Chemistry. Appl Biochem Biotechnol 2024; 196:1769-1785. [PMID: 37453025 DOI: 10.1007/s12010-023-04643-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
Nitrilases are the enzymes that catalyze the hydrolysis of nitriles to corresponding carboxylic acid and ammonia. They are broadly categorized into aromatic, aliphatic, and arylacetonitrilases based on their substrate specificity. Most of the studies pertaining to these enzymes in the literature have focused on aromatic and aliphatic nitrilases. However, arylacetonitrilases have attracted the attention of academia and industry in the last several years due to their aryl specificity and enantioselectivity. They have emerged as interesting biocatalytic tools in green chemistry to synthesize useful aryl acids such as mandelic acid and derivatives of phenylacetic acid. The aim of the present review is to collate information on the arylacetonitrilases and their catalytic properties including enantioselectivity and potential applications in organic synthesis.
Collapse
Affiliation(s)
- Tek Chand Bhalla
- Department of Biotechnology, Himachal Pradesh University, Himachal Pradesh, Gyan-Path, Shimla, 171005, India.
| | - Neerja Thakur
- Department of Biotechnology, Himachal Pradesh University, Himachal Pradesh, Gyan-Path, Shimla, 171005, India
- Department of Biotechnology and Microbiology, Himachal Pradesh, Rajkiya Kanya Mahavidyalaya, Longwood, Shimla, 171001, India
| | - Vijay Kumar
- Department of Biotechnology, Himachal Pradesh University, Himachal Pradesh, Gyan-Path, Shimla, 171005, India
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
3
|
Shen JD, Cai X, Liu ZQ, Zheng YG. Nitrilase: a promising biocatalyst in industrial applications for green chemistry. Crit Rev Biotechnol 2020; 41:72-93. [PMID: 33045860 DOI: 10.1080/07388551.2020.1827367] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nitrilases are widely distributed in nature and are able to hydrolyze nitriles into their corresponding carboxylic acids and ammonia. In industry, nitrilases have been used as green biocatalysts for the production of high value-added products. To date, biocatalysts are considered to be important alternatives to chemical catalysts due to increasing environmental problems and resource scarcity. This review provides an overview of recent advances of nitrilases in aspects of distribution, enzyme screening, molecular structure and catalytic mechanism, protein engineering, and their potential applications in industry.
Collapse
Affiliation(s)
- Ji-Dong Shen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P.R. China
| | - Xue Cai
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P.R. China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P.R. China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P.R. China
| |
Collapse
|
4
|
Mulelu AE, Kirykowicz AM, Woodward JD. Cryo-EM and directed evolution reveal how Arabidopsis nitrilase specificity is influenced by its quaternary structure. Commun Biol 2019; 2:260. [PMID: 31341959 PMCID: PMC6637149 DOI: 10.1038/s42003-019-0505-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 06/13/2019] [Indexed: 01/17/2023] Open
Abstract
Nitrilases are helical enzymes that convert nitriles to acids and/or amides. All plants have a nitrilase 4 homolog specific for ß-cyanoalanine, while in some plants neofunctionalization has produced nitrilases with altered specificity. Plant nitrilase substrate size and specificity correlate with helical twist, but molecular details of this relationship are lacking. Here we determine, to our knowledge, the first close-to-atomic resolution (3.4 Å) cryo-EM structure of an active helical nitrilase, the nitrilase 4 from Arabidopsis thaliana. We apply site-saturation mutagenesis directed evolution to three residues (R95, S224, and L169) and generate a mutant with an altered helical twist that accepts substrates not catalyzed by known plant nitrilases. We reveal that a loop between α2 and α3 limits the length of the binding pocket and propose that it shifts position as a function of helical twist. These insights will allow us to start designing nitrilases for chemoenzymatic synthesis.
Collapse
Affiliation(s)
- Andani E. Mulelu
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925 South Africa
- Structural Biology Research Unit, University of Cape Town, Cape Town, 7925 South Africa
| | - Angela M. Kirykowicz
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925 South Africa
- Structural Biology Research Unit, University of Cape Town, Cape Town, 7925 South Africa
| | - Jeremy D. Woodward
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925 South Africa
- Structural Biology Research Unit, University of Cape Town, Cape Town, 7925 South Africa
| |
Collapse
|
5
|
Xue YP, Jiao B, Hua DE, Cheng F, Liu ZQ, Zheng YG. Improving catalytic performance of an arylacetonitrilase by semirational engineering. Bioprocess Biosyst Eng 2017; 40:1565-1572. [DOI: 10.1007/s00449-017-1812-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/01/2017] [Indexed: 01/08/2023]
|
6
|
Bioengineering of Nitrilases Towards Its Use as Green Catalyst: Applications and Perspectives. Indian J Microbiol 2017; 57:131-138. [PMID: 28611489 DOI: 10.1007/s12088-017-0645-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/20/2017] [Indexed: 10/19/2022] Open
Abstract
Nitrilases are commercial biocatalysts used for the synthesis of plastics, paints, fibers in the chemical industries, pharmaceutical drugs and herbicides for agricultural uses. Nitrilase hydrolyses the nitriles and dinitriles to their corresponding carboxylic acids and ammonia. They have a broad range of substrate specificities as well as enantio-, regio- and chemo-selective properties which make them useful for biotransformation of nitriles to important compounds because of which they are considered as 'Green Catalysts'. Nitriles are widespread in nature and synthesized as a consequence of anthropogenic and biological activities. These are also present in certain plant species and are known to cause environmental pollution. Biotransformation using native organisms as catalysts tends to be insufficient since the enzyme of interest has very low amount in the total cellular protein, rate of reaction is slow along with the instability of enzymes. Therefore, to overcome these limitations, bioengineering offers an alternative approach to alter the properties of enzymes to enhance the applicability and stability. The present review highlights the aspects of producing the recombinant microorganisms and overexpressing the enzyme of interest for the enhanced stability at high temperatures, immobilization techniques, extremes of pH, organic solvents and hydrolysing dintriles to chiral compounds which may enhance the possibilities for creating specific enzymes for biotransformation.
Collapse
|
7
|
Recent advances and challenges in the heterologous production of microbial nitrilases for biocatalytic applications. World J Microbiol Biotechnol 2016; 33:8. [DOI: 10.1007/s11274-016-2173-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/05/2016] [Indexed: 01/21/2023]
|
8
|
High-throughput screening methods for nitrilases. Appl Microbiol Biotechnol 2016; 100:3421-32. [DOI: 10.1007/s00253-016-7381-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 10/22/2022]
|
9
|
Park JM, Mulelu A, Sewell BT, Benedik MJ. Probing an Interfacial Surface in the Cyanide Dihydratase from Bacillus pumilus, A Spiral Forming Nitrilase. Front Microbiol 2016; 6:1479. [PMID: 26779137 PMCID: PMC4700190 DOI: 10.3389/fmicb.2015.01479] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/08/2015] [Indexed: 11/13/2022] Open
Abstract
Nitrilases are of significant interest both due to their potential for industrial production of valuable products as well as degradation of hazardous nitrile-containing wastes. All known functional members of the nitrilase superfamily have an underlying dimer structure. The true nitrilases expand upon this basic dimer and form large spiral or helical homo-oligomers. The formation of this larger structure is linked to both the activity and substrate specificity of these nitrilases. The sequences of the spiral nitrilases differ from the non-spiral forming homologs by the presence of two insertion regions. Homology modeling suggests that these regions are responsible for associating the nitrilase dimers into the oligomer. Here we used cysteine scanning across these two regions, in the spiral forming nitrilase cyanide dihydratase from Bacillus pumilus (CynD), to identify residues altering the oligomeric state or activity of the nitrilase. Several mutations were found to cause changes to the size of the oligomer as well as reduction in activity. Additionally one mutation, R67C, caused a partial defect in oligomerization with the accumulation of smaller oligomer variants. These results support the hypothesis that these insertion regions contribute to the unique quaternary structure of the spiral microbial nitrilases.
Collapse
Affiliation(s)
- Jason M Park
- Department of Biology, Texas A&M University, College Station TX, USA
| | - Andani Mulelu
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, Institute for Infectious Diseases and Molecular Medicine, University of Cape Town Cape Town, South Africa
| | - B Trevor Sewell
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, Institute for Infectious Diseases and Molecular Medicine, University of Cape Town Cape Town, South Africa
| | - Michael J Benedik
- Department of Biology, Texas A&M University, College Station TX, USA
| |
Collapse
|
10
|
Gong JS, Li H, Lu ZM, Zhang XJ, Zhang Q, Yu JH, Zhou ZM, Shi JS, Xu ZH. Engineering of a fungal nitrilase for improving catalytic activity and reducing by-product formation in the absence of structural information. Catal Sci Technol 2016. [DOI: 10.1039/c5cy01535a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Semi-rational engineering approach was employed to improve the catalytic activity and reduce the by-product formation of fungal nitrilase.
Collapse
Affiliation(s)
- Jin-Song Gong
- School of Pharmaceutical Science
- Jiangnan University
- Wuxi 214122
- People's Republic of China
| | - Heng Li
- School of Pharmaceutical Science
- Jiangnan University
- Wuxi 214122
- People's Republic of China
| | - Zhen-Ming Lu
- School of Pharmaceutical Science
- Jiangnan University
- Wuxi 214122
- People's Republic of China
| | - Xiao-Juan Zhang
- School of Pharmaceutical Science
- Jiangnan University
- Wuxi 214122
- People's Republic of China
| | - Qiang Zhang
- School of Pharmaceutical Science
- Jiangnan University
- Wuxi 214122
- People's Republic of China
| | - Jiang-Hong Yu
- School of Pharmaceutical Science
- Jiangnan University
- Wuxi 214122
- People's Republic of China
| | - Zhe-Min Zhou
- The Key Laboratory of Industrial Biotechnology
- Ministry of Education
- Jiangnan University
- Wuxi 214122
- People's Republic of China
| | - Jin-Song Shi
- School of Pharmaceutical Science
- Jiangnan University
- Wuxi 214122
- People's Republic of China
| | - Zheng-Hong Xu
- School of Pharmaceutical Science
- Jiangnan University
- Wuxi 214122
- People's Republic of China
| |
Collapse
|
11
|
Luo H, Ma J, Chang Y, Yu H, Shen Z. Directed Evolution and Mutant Characterization of Nitrilase from Rhodococcus rhodochrous tg1-A6. Appl Biochem Biotechnol 2015; 178:1510-21. [DOI: 10.1007/s12010-015-1964-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/21/2015] [Indexed: 11/30/2022]
|
12
|
Protein engineering of a nitrilase from Burkholderia cenocepacia J2315 for efficient and enantioselective production of (R)-o-chloromandelic acid. Appl Environ Microbiol 2015; 81:8469-77. [PMID: 26431972 DOI: 10.1128/aem.02688-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 09/28/2015] [Indexed: 11/20/2022] Open
Abstract
The nitrilase-mediated pathway has significant advantages in the production of optically pure aromatic α-hydroxy carboxylic acids. However, low enantioselectivity and activity are observed on hydrolyzing o-chloromandelonitrile to produce optically pure (R)-o-chloromandelic acid. In the present study, a protein engineering approach was successfully used to enhance the performance of nitrilase obtained from Burkholderia cenocepacia strain J2315 (BCJ2315) in hydrolyzing o-chloromandelonitrile. Four hot spots (T49, I113, Y199, and T310) responsible for the enantioselectivity and activity of BCJ2315 were identified by random mutagenesis. An effective double mutant (I113M/Y199G [encoding the replacement of I with M at position 113 and Y with G at position 199]), which demonstrated remarkably enhanced enantioselectivity (99.1% enantiomeric excess [ee] compared to 89.2% ee for the wild type) and relative activity (360% of the wild type), was created by two rounds of site saturation mutagenesis, first at each of the four hot spots and subsequently at position 199 for combination with the selected beneficial mutation I113M. Notably, this mutant also demonstrated dramatically enhanced enantioselectivity and activity toward other mandelonitrile derivatives and, thus, broadened the substrate scope of this nitrilase. Using an ethyl acetate-water (1:9) biphasic system, o-chloromandelonitrile (500 mM) was completely hydrolyzed in 3 h by this mutant with a small amount of biocatalyst (10 g/liter wet cells), resulting in a high concentration of (R)-o-chloromandelic acid with 98.7% ee, to our knowledge the highest ever reported. This result highlights a promising method for industrial production of optically pure (R)-o-chloromandelic acid. Insight into the source of enantioselectivity and activity was gained by homology modeling and molecular docking experiments.
Collapse
|
13
|
|
14
|
Xue YP, Shi CC, Xu Z, Jiao B, Liu ZQ, Huang JF, Zheng YG, Shen YC. Design of Nitrilases with Superior Activity and Enantioselectivity towards Sterically Hindered Nitrile by Protein Engineering. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500039] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
Cloning, purification and evaluation of the enzymatic properties of a novel arylacetonitrilase from Luminiphilus syltensis NOR5-1B: a potential biocatalyst for the synthesis of mandelic acid and its derivatives. Biotechnol Lett 2015; 37:1655-61. [PMID: 25854992 DOI: 10.1007/s10529-015-1830-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/27/2015] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To examine nitrilase-mediated hydrolysis of nitriles to produce optically pure α-hydroxycarboxylic acids. RESULTS A novel nitrilase, GPnor51, from Luminiphilus syltensis NOR5-1B was discovered by genomic data mining. It could hydrolyze racemic o-chloromandelonitrile to (R)-o-chloromandelic acid with high enantioselectivity (ee 98.2 %). GPnor51 was overexpressed in Escherichia coli BL21 (DE3), purified, and its catalytic properties studied. GPnor51 had a broad substrate acceptance toward various nitriles with structure diversity. It was an arylacetonitrilase that uses arylacetonitriles as optimal substrates. The V max and K m of GPnor51 towards o-chloromandelonitrile were 1.9 μmol min(-1) mg(-1) protein and 0.38 mM, respectively. GPnor51 also demonstrated high enantioselectivity toward mandelonitrile and other substituted mandelonitrile. CONCLUSION This enzyme has a great potential for commercial production of optically pure (R)-mandelic acid and its derivatives.
Collapse
|
16
|
Exploring the Potential of Fungal Arylacetonitrilases in Mandelic Acid Synthesis. Mol Biotechnol 2015; 57:466-74. [DOI: 10.1007/s12033-015-9840-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
Liu ZQ, Zhang XH, Xue YP, Xu M, Zheng YG. Improvement of Alcaligenes faecalis nitrilase by gene site saturation mutagenesis and its application in stereospecific biosynthesis of (R)-(-)-mandelic acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:4685-4694. [PMID: 24766313 DOI: 10.1021/jf405683f] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Nitrilases have recently received considerable attention as the biocatalysts for stereospecific production of carboxylic acids. To improve the activity, the nitrilase from Alcaligenes faecalis was selected for further modification by the gene site saturation mutagenesis method (GSSM), based on homology modeling and previous reports about mutations. After mutagenesis, the positive mutants were selected using a convenient two-step high-throughput screening method based on product formation and pH indicator combined with the HPLC method. After three rounds of GSSM, Mut3 (Gln196Ser/Ala284Ile) with the highest activity and ability of tolerance to the substrate was selected. As compared to the wild-type A. faecalis nitrilase, Mut3 showed 154% higher specific activity. Mut3 could retain 91.6% of its residual activity after incubation at pH 6.5 for 6 h. In a fed-batch reaction with 800 mM mandelonitrile as the substrate, the cumulative production of (R)-(-)-mandelic acid after 7.5 h of conversion reached 693 mM with an enantiomeric excess of 99%, and the space-time productivity of Mut3 was 21.50-fold higher than that of wild-type nitrilase. The Km, Vmax, and k(cat) of wild-type and Mut3 for mandelonitrile were 20.64 mM, 33.74 μmol mg(-1) min(-1), 24.45 s(-1), and 9.24 mM, 47.68 μmol mg(-1) min(-1), and 34.55 s(-1), respectively. A homology modeling and molecular docking study showed that the diameter of the catalytic tunnel of Mut3 became longer and that the tunnel volume was smaller. These structural changes are proposed to improve the hydrolytic activity and pH stability of Mut3. Mut3 has the potential for industrial applications in the upscale production of (R)-(-)-mandelic acid.
Collapse
Affiliation(s)
- Zhi-Qiang Liu
- Institute of Bioengineering, Zhejiang University of Technology , Hangzhou, Zhejiang 310014, People's Republic of China
| | | | | | | | | |
Collapse
|
18
|
A high throughput screening strategy for the assessment of nitrile-hydrolyzing activity towards the production of enantiopure β-hydroxy acids. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2013.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Wang H, Sun H, Gao W, Wei D. Efficient Production of (R)-o-Chloromandelic Acid by Recombinant Escherichia coli Cells Harboring Nitrilase from Burkholderia cenocepacia J2315. Org Process Res Dev 2013. [DOI: 10.1021/op400174a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hualei Wang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Huihui Sun
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Wenyuan Gao
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| |
Collapse
|
20
|
Yusuf F, Chaubey A, Raina A, Jamwal U, Parshad R. Enhancing nitrilase production from Fusarium proliferatum using response surface methodology. SPRINGERPLUS 2013; 2:290. [PMID: 23853757 PMCID: PMC3706717 DOI: 10.1186/2193-1801-2-290] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 06/19/2013] [Indexed: 11/27/2022]
Abstract
The individual and interactive effects of three independent variables i.e. carbon source (glucose), nitrogen source (sodium nitrate) and inducer (ϵ-caprolactam) on nitrilase production from Fusarium proliferatum were investigated using design of experiments (DOE) methodology. Response surface methodology (RSM) was followed to generate the process model and to obtain the optimal conditions for maximum nitrilase production. Based on central composite design (CCD) a quadratic model was found to fit the experimental data (p<0.0001) and maximum activity of 59.0U/g biomass was predicted at glucose concentration (53.22 g/l), sodium nitrate (2.31 g/l) and ϵ-caprolactam (3.58 g/l). Validation experiments were carried out under the optimized conditions for verification of the model. The nitrilase activity of 58.3U/g biomass obtained experimentally correlated to the predicted activity which proves the authenticity of the model. Overall 2.24 fold increase in nitrilase activity was achieved as compared to the activity before optimization (26U/g biomass).
Collapse
Affiliation(s)
- Farnaz Yusuf
- Fermentation Technology Division, Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001 India
| | | | | | | | | |
Collapse
|
21
|
Wu Y, Gong JS, Lu ZM, Li H, Zhu XY, Li H, Shi JS, Xu ZH. Isolation and characterization of Gibberella intermedia
CA3-1, a novel and versatile nitrilase-producing fungus. J Basic Microbiol 2013; 53:934-41. [DOI: 10.1002/jobm.201200143] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 07/25/2012] [Indexed: 11/08/2022]
Affiliation(s)
- Yan Wu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University; Wuxi 214122 PR China
| | - Jin-Song Gong
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University; Wuxi 214122 PR China
| | - Zhen-Ming Lu
- Laboratory of Pharmaceutical Engineering, School of Medicine and Pharmaceutics, Jiangnan University; Wuxi 214122 PR China
| | - Heng Li
- Laboratory of Bioactive Products Processing Engineering, School of Medicine and Pharmaceutics, Jiangnan University; Wuxi 214122 PR China
| | - Xiao-Yan Zhu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University; Wuxi 214122 PR China
| | - Hui Li
- Laboratory of Pharmaceutical Engineering, School of Medicine and Pharmaceutics, Jiangnan University; Wuxi 214122 PR China
| | - Jing-Song Shi
- Laboratory of Bioactive Products Processing Engineering, School of Medicine and Pharmaceutics, Jiangnan University; Wuxi 214122 PR China
| | - Zheng-Hong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University; Wuxi 214122 PR China
- Laboratory of Pharmaceutical Engineering, School of Medicine and Pharmaceutics, Jiangnan University; Wuxi 214122 PR China
| |
Collapse
|
22
|
Veselá AB, Petříčková A, Weyrauch P, Martínková L. Heterologous expression, purification and characterization of arylacetonitrilases fromNectria haematococcaandArthroderma benhamiae. BIOCATAL BIOTRANSFOR 2013. [DOI: 10.3109/10242422.2012.758117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Gong JS, Lu ZM, Li H, Shi JS, Zhou ZM, Xu ZH. Nitrilases in nitrile biocatalysis: recent progress and forthcoming research. Microb Cell Fact 2012; 11:142. [PMID: 23106943 PMCID: PMC3537687 DOI: 10.1186/1475-2859-11-142] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/23/2012] [Indexed: 12/27/2022] Open
Abstract
Over the past decades, nitrilases have drawn considerable attention because of their application in nitrile degradation as prominent biocatalysts. Nitrilases are derived from bacteria, filamentous fungi, yeasts, and plants. In-depth investigations on their natural sources function mechanisms, enzyme structure, screening pathways, and biocatalytic properties have been conducted. Moreover, the immobilization, purification, gene cloning and modifications of nitrilase have been dwelt upon. Some nitrilases are used commercially as biofactories for carboxylic acids production, waste treatment, and surface modification. This critical review summarizes the current status of nitrilase research, and discusses a number of challenges and significant attempts in its further development. Nitrilase is a significant and promising biocatalyst for catalytic applications.
Collapse
Affiliation(s)
- Jin-Song Gong
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China
| | | | | | | | | | | |
Collapse
|
24
|
Petříčková A, Sosedov O, Baum S, Stolz A, Martínková L. Influence of point mutations near the active site on the catalytic properties of fungal arylacetonitrilases from Aspergillus niger and Neurospora crassa. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.molcatb.2012.01.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Efficient production of (R)-o-chloromandelic acid by deracemization of o-chloromandelonitrile with a new nitrilase mined from Labrenzia aggregata. Appl Microbiol Biotechnol 2012; 95:91-9. [DOI: 10.1007/s00253-012-3993-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Revised: 02/13/2012] [Accepted: 02/22/2012] [Indexed: 10/28/2022]
|
26
|
Wang L, Watermeyer JM, Mulelu AE, Sewell BT, Benedik MJ. Engineering pH-tolerant mutants of a cyanide dihydratase. Appl Microbiol Biotechnol 2011; 94:131-40. [DOI: 10.1007/s00253-011-3620-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 09/06/2011] [Accepted: 09/29/2011] [Indexed: 10/16/2022]
|