1
|
Dong Y, Ronholm J, Fliss I, Karboune S. Screening of Lactic Acid Bacteria Strains for Potential Sourdough and Bread Applications: Enzyme Expression and Exopolysaccharide Production. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10270-y. [PMID: 38733464 DOI: 10.1007/s12602-024-10270-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2024] [Indexed: 05/13/2024]
Abstract
Twenty-eight strains of lactic acid bacteria (LAB) were characterized for the ability to express enzymes of interest (including protease, xylanase, α-amylase, laccase, and glucose oxidase) as well as the ability to produce exopolysaccharide (EPS). The screening of enzyme capability for all LAB strains proceeded in a progressive 3-stage manner that helps to profile the efficiency of LAB strains in expressing chosen enzymes (Stage 1), highlights the strains with affinity for flour as the substrate (Stage 2), and discerns strains that can adapt well in a simulated starter environment (Stage 3). The theoretical ability of LAB to express these enzymes was also assessed using Basic Local Alignment Search Tool (BLAST) analysis to identify the underlying genes in the whole genome sequence. By consolidating both experimental data and information obtained from BLAST, three LAB strains were deemed optimal in expressing enzymes, namely, Lb. delbrueckii subsp. bulgaricus (RBL 52), Lb. rhamnosus (RBL 102), and Lb. plantarum (ATCC 10241). Meanwhile, EPS-producing capabilities were observed for 10 out of 28 LAB strains, among which, Lactococcus lactis subsp. diacetylactis (RBL 37) had the highest total EPS yield (274.15 mg polysaccharide/L culture) and produced 46.2% polysaccharide with a molecular mass of more than 100 kDa.
Collapse
Affiliation(s)
- YiNing Dong
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Montreal, QC, Canada
| | - Jennifer Ronholm
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Montreal, QC, Canada
| | - Ismail Fliss
- Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Quebec City, QC, Canada
| | - Salwa Karboune
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Montreal, QC, Canada.
| |
Collapse
|
2
|
Recombinant production and characterisation of two chitinases from Rasamsonia emersonii, and assessment of their potential industrial applicability. Appl Microbiol Biotechnol 2021; 105:7769-7783. [PMID: 34581845 DOI: 10.1007/s00253-021-11578-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 12/22/2022]
Abstract
Rasamsonia emersonii (previously Talaromyces emersonii) is a thermophilic filamentous fungus displaying optimum growth at 45 °C. It has a history of use in commercial food enzyme production. Its unfractionated chitinolytic secretome was partially characterised in the early 1990s; however, no individual chitinase from this source has been described in literature previously. This study describes two GH18 chitinases originating from the R. emersonii genome, expressed in the methylotrophic yeast P. pastoris. Chit1 comprises of a GH18 catalytic domain and Chit2 comprises of a GH18 catalytic domain and a chitin-binding motif at the C-terminal. The chitinases were expressed as glycoproteins. The apparent molecular weight of Chit1 was 35.8-42.1 kDa with a smearing tail associated with glyco-sidechains visible up to 72.2 kDa. This became two bands of 30.8 and 29.0 kDa upon de-glycosylation. The apparent molecular weight of Chit2 was 50.4 kDa, reducing to 48.2 kDa upon de-glycosylation. Both chitinases displayed endo-chitinase and chitobiosidase activity, temperature optima of 50-55 °C and low pH optima (pH 4.5 or lower); Chit1 displayed a pH optimum of 3.5, retaining > 60% maximum activity at pH 2.2, a pH range lower than most enzymes of fungal origin. Chit2 displayed the highest chitin-degrading ability at 3456 µmol/mg on 4-NP-triacetylchitotriose, but lost activity faster than Chit1, which displayed 403 µmol/mg on the same substrate. The predicted D values (time required to reduce the enzyme activity to 10% of its original value at 50 °C) were 19.2 and 2.3 days for Chit1 and Chit2, respectively. Thus, Chit1 can be considered one of few hyperthermostable chitinase enzymes described in literature to date. Their physicochemical properties render these chitinases likely suitable for shrimp chitin processing including one-step chitin hydrolysis and alternative sustainable protein processing and the attractive emerging application of mushroom food waste valorisation.Key points• Two GH18 chitinases originating from the industrially relevant thermophilic fungus R. emersonii were cloned and expressed in P. pastoris.• The purified recombinant chitinases showed low pH and high temperature optima and appreciable thermostability at industrially relevant temperatures.• The chitinases displayed characteristics that indicate their likely suitability to several industrial applications including sustainable alternative protein processing, food waste valorisation of commercial mushroom production and one-step shrimp chitin processing.
Collapse
|
3
|
Influence of enzymatic tempering on milling characteristics, flour quality, crystallinity and microstructure of wheat. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00445-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
Improving the fermentable sugar yields of wheat straw by high-temperature pre-hydrolysis with thermophilic enzymes of Malbranchea cinnamomea. Microb Cell Fact 2020; 19:149. [PMID: 32711527 PMCID: PMC7382850 DOI: 10.1186/s12934-020-01408-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 07/20/2020] [Indexed: 12/23/2022] Open
Abstract
Background Enzymatic hydrolysis is a key step in the conversion of lignocellulosic polysaccharides to fermentable sugars for the production of biofuels and high-value chemicals. However, current enzyme preparations from mesophilic fungi are deficient in their thermostability and biomass-hydrolyzing efficiency at high temperatures. Thermophilic fungi represent promising sources of thermostable and highly active enzymes for improving the biomass-to-sugar conversion process. Here we present a comprehensive study on the lignocellulosic biomass-degrading ability and enzyme system of thermophilic fungus Malbranchea cinnamomea N12 and the application of its enzymes in the synergistic hydrolysis of lignocellulosic biomass. Results Malbranchea cinnamomea N12 was capable of utilizing untreated wheat straw to produce high levels of xylanases and efficiently degrading lignocellulose under thermophilic conditions. Temporal analysis of the wheat straw-induced secretome revealed that M. cinnamomea N12 successively degraded the lignocellulosic polysaccharides through sequential secretion of enzymes targeting xylan and cellulose. Xylanase-enriched cocktail from M. cinnamomea N12 was more active on native and alkali‑pretreated wheat straw than the commercial xylanases from Trichoderma reesei over temperatures ranging from 40 to 75 °C. Integration of M. cinnamomea N12 enzymes with the commercial cellulase preparation increased the glucose and xylose yields of alkali‑pretreated wheat straw by 32 and 166%, respectively, with pronounced effects at elevated temperature. Conclusions This study demonstrated the remarkable xylanase-producing ability and strategy of sequential lignocellulose breakdown of M. cinnamomea N12. A new process for the hydrolysis of lignocellulosic biomass was proposed, comprising thermophilic enzymolysis by enzymes of M. cinnamomea N12 followed with mesophilic enzymolysis by commercial cellulases. Developing M. cinnamomea N12 as platforms for thermophilic enzyme mixture production will provide new perspectives for improved conversion yields for current biomass saccharification schemes.
Collapse
|
5
|
Bhardwaj N, Kumar B, Verma P. A detailed overview of xylanases: an emerging biomolecule for current and future prospective. BIORESOUR BIOPROCESS 2019. [DOI: 10.1186/s40643-019-0276-2] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Xylan is the second most abundant naturally occurring renewable polysaccharide available on earth. It is a complex heteropolysaccharide consisting of different monosaccharides such as l-arabinose, d-galactose, d-mannoses and organic acids such as acetic acid, ferulic acid, glucuronic acid interwoven together with help of glycosidic and ester bonds. The breakdown of xylan is restricted due to its heterogeneous nature and it can be overcome by xylanases which are capable of cleaving the heterogeneous β-1,4-glycoside linkage. Xylanases are abundantly present in nature (e.g., molluscs, insects and microorganisms) and several microorganisms such as bacteria, fungi, yeast, and algae are used extensively for its production. Microbial xylanases show varying substrate specificities and biochemical properties which makes it suitable for various applications in industrial and biotechnological sectors. The suitability of xylanases for its application in food and feed, paper and pulp, textile, pharmaceuticals, and lignocellulosic biorefinery has led to an increase in demand of xylanases globally. The present review gives an insight of using microbial xylanases as an “Emerging Green Tool” along with its current status and future prospective.
Collapse
|
6
|
Zhygunov D, Marchenkov D, Lebedenko T. ADJUSTING FLOUR QUALITY BY ENZYMES: CURRENT STATE, PROBLEM ANALYSIS, FUTURE DEVELOPMENT PROSPECTS. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.15673/fst.v13i2.1380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The article overviews the issue of wheat flour modification by enzymes. The role of enzymes in the dough formation process is considered. Modern ways of providing the desired dough parameters for flour products in conditions of Ukraine are shown. Recommendations and suggested directions for further research are given. Flour is a complex multicomponent product and have to correspond with a number of requirements for its composition and properties. Different conditions of grain cultivation and storage result in significant deviations of its quality indicators when it comes to flour mills. The modification of flour going through adding several technological additives, in particular by enzyme products. The action of enzymes to a large extent allows to adjust the properties of the dough and of flour end-products. In addition, enzymes further affect the nutritional values of flour, which makes it possible for the flour production to use low-quality grain, while maintaining the planned quality indicators of flour. The functional properties of flour fractions obtained on different technological passages depend on the content of various anatomical parts of the grain from which they derived from. Particle size, starch damage, protein content, fat content, ash content and intensity of enzyme activity vary significantly depending on the type of grinding equipment. All this gives reason for recommending the introduction of enzymes not while manufacturing bakery end-products but still at the stage of flour production. The damage to the grain with a corn bug, grain germination in Ukraine puts grain-processing plants the task of assessing the activity of own grain enzyme systems. Indirectly, this can be estimated using the gluten deformation index and the grain Falling Number. But the estimation of enzyme systems by such methods does not allow precisely to calculate the amount and composition of enzyme products necessary to achieve maximum effect when adjusting flour properties. The issue of removing anti-nutrient factors in flour, which is largely inhibitors of the action of both their own grain enzyme systems and additionally introduced enzyme preparations, is also relevant.
Collapse
|
7
|
Subala SP, Shivakumar MS. Circadian variation affects the biology and digestive profiles of a nocturnal insectSpodoptera litura(Insecta: Lepidoptera). BIOL RHYTHM RES 2016. [DOI: 10.1080/09291016.2016.1251928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Mahajan C, Basotra N, Singh S, Di Falco M, Tsang A, Chadha BS. Malbranchea cinnamomea: A thermophilic fungal source of catalytically efficient lignocellulolytic glycosyl hydrolases and metal dependent enzymes. BIORESOURCE TECHNOLOGY 2016; 200:55-63. [PMID: 26476165 DOI: 10.1016/j.biortech.2015.09.113] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 05/11/2023]
Abstract
This study reports thermophilic fungus Malbranchea cinnamomea as an important source of lignocellulolytic enzymes. The secretome analysis using LC-MS/MS orbitrap showed that fungus produced a spectrum of glycosyl hydrolases (cellulase/hemicellulase), polysaccharide lyases (PL) and carbohydrate esterases (CE) in addition to cellobiose dehydrogenase (CDH) indicating the presence of functional classical and oxidative cellulolytic mechanisms. The protein fractions in the secretome resolved by ion exchange chromatography were analyzed for ability to hydrolyze alkali treated carrot grass (ATCG) in the presence of Mn(2+)/Cu(2+). This strategy in tandem with peptide mass fingerprinting led to identification of metal dependent protein hydrolases with no apparent hydrolytic activity, however, showed 5.7 folds higher saccharification in presence of Mn(2+). Furthermore, adding different protein fractions to commercial cellulase (Novozymes: Cellic CTec2) resulted in enhanced hydrolysis of ATCG ranging between 1.57 and 3.43 folds indicating the enzymes from M. cinnamomea as catalytically efficient.
Collapse
Affiliation(s)
- Chhavi Mahajan
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| | - Neha Basotra
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| | - Surender Singh
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| | - Marcos Di Falco
- Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada.
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada.
| | - B S Chadha
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| |
Collapse
|
9
|
Lima TDA, Pontual EV, Dornelles LP, Amorim PK, Sá RA, Coelho LCBB, Napoleão TH, Paiva PMG. Digestive enzymes from workers and soldiers of termite Nasutitermes corniger. Comp Biochem Physiol B Biochem Mol Biol 2014; 176:1-8. [DOI: 10.1016/j.cbpb.2014.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 06/28/2014] [Accepted: 07/02/2014] [Indexed: 10/25/2022]
|
10
|
Neumüller KG, Streekstra H, Gruppen H, Schols HA. Trichoderma longibrachiatum acetyl xylan esterase 1 enhances hemicellulolytic preparations to degrade corn silage polysaccharides. BIORESOURCE TECHNOLOGY 2014; 163:64-73. [PMID: 24787318 DOI: 10.1016/j.biortech.2014.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 03/31/2014] [Accepted: 04/02/2014] [Indexed: 05/11/2023]
Abstract
Supplementation of a Trichoderma longibrachiatum preparation to an industrial Aspergillus niger/Talaromyces emersonii enzyme mixture demonstrated synergy for the saccharification of corn silage water-unextractable solids (WUS). Sub-fractions of the crude T. longibrachiatum preparation obtained after chromatography were analyzed regarding their hydrolytic activity. An acetyl xylan esterase 1 [Axe1, carbohydrate esterase (CE) family 5]-enriched sub-fraction closely mimicked the hydrolytic gain as obtained by supplementation of the complete, crude enzyme mixture (increase of 50%, 62% and 29% for Xyl, Ara and Glc, respectively). The acetic acid released from model polysaccharides (WUS) and oligosaccharides [neutral (AcXOS) and acidic (AcUXOS) xylo-oligosaccharides] by Axe1 was two and up to six times higher compared to the acetic acid released by acetyl xylan esterase A (AxeA, CE 1). Characterization of Axe1 treated AcXOS and AcUXOS revealed deacetylation of oligosaccharides that were not deacetylated by AxeA or the A. niger/T. emersonii preparation.
Collapse
Affiliation(s)
- K G Neumüller
- DSM Biotechnology Center, PO Box 1, 2600 MA Delft, The Netherlands; Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - H Streekstra
- DSM Biotechnology Center, PO Box 1, 2600 MA Delft, The Netherlands
| | - H Gruppen
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - H A Schols
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands.
| |
Collapse
|
11
|
Oliveira D, Telis-Romero J, Da-Silva R, Franco C. Effect of a Thermoascus aurantiacus thermostable enzyme cocktail on wheat bread qualitiy. Food Chem 2014; 143:139-46. [DOI: 10.1016/j.foodchem.2013.07.103] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 07/03/2013] [Accepted: 07/20/2013] [Indexed: 10/26/2022]
|
12
|
Zannini E, Kingston W, Arendt EK, Waters DM. Technological challenges and strategies for developing low-protein/protein-free cereal foods for specific dietary management. Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|