1
|
Shibasaki S, Ueda M. Utilization of Macroalgae for the Production of Bioactive Compounds and Bioprocesses Using Microbial Biotechnology. Microorganisms 2023; 11:1499. [PMID: 37375001 DOI: 10.3390/microorganisms11061499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/18/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
To achieve sustainable development, alternative resources should replace conventional resources such as fossil fuels. In marine ecosystems, many macroalgae grow faster than terrestrial plants. Macroalgae are roughly classified as green, red, or brown algae based on their photosynthetic pigments. Brown algae are considered to be a source of physiologically active substances such as polyphenols. Furthermore, some macroalgae can capture approximately 10 times more carbon dioxide from the atmosphere than terrestrial plants. Therefore, they have immense potential for use in the environment. Recently, macroalgae have emerged as a biomass feedstock for bioethanol production owing to their low lignin content and applicability to biorefinery processes. Herein, we provided an overview of the bioconversion of macroalgae into bioactive substances and biofuels using microbial biotechnology, including engineered yeast designed using molecular display technology.
Collapse
Affiliation(s)
- Seiji Shibasaki
- Laboratory of Natural Science, Faculty of Economics, Toyo University, Hakusan Bunkyo-ku, Tokyo 112-8606, Japan
| | - Mitsuyoshi Ueda
- Office of Society-Academia Collaboration for Innovation (SACI), Kyoto University, Yoshidahonmachi, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
2
|
Iqbal MW, Riaz T, Mahmood S, Ali K, Khan IM, Rehman A, Zhang W, Mu W. A review on selective l-fucose/d-arabinose isomerases for biocatalytic production of l-fuculose/d-ribulose. Int J Biol Macromol 2020; 168:558-571. [PMID: 33296692 DOI: 10.1016/j.ijbiomac.2020.12.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/16/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022]
Abstract
L-Fuculose and D-ribulose are kinds of rare sugars used in food, agriculture, and medicine industries. These are pentoses and categorized into the two main groups, aldo pentoses and ketopentoses. There are 8 aldo- and 4 ketopentoses and only fewer are natural, while others are rare sugars found in a very small amount in nature. These sugars have great commercial applications, especially in many kinds of drugs in the medicine industry. The synthesis of these sugars is very expensive, difficult by chemical methods due to its absence in nature, and could not meet industry demands. The pentose izumoring strategy offers a complete enzymatic tactic to link all kinds of pentoses using different enzymes. The enzymatic production of L-fuculose and D-ribulose through L-fucose isomerase (L-FI) and D-arabinose isomerase (D-AI) is the inexpensive and uncomplicated method up till now. Both enzymes have similar kinds of isomerizing mechanisms and each enzyme can catalyze both L-fucose and D-arabinose. In this review article, the enzymatic process of biochemically characterized L-FI & D-AI, their application to produce L-fuculose and D-ribulose and its uses in food, agriculture, and medicine industries are reviewed.
Collapse
Affiliation(s)
- Muhammad Waheed Iqbal
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tahreem Riaz
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shahid Mahmood
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Khubaib Ali
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Abdur Rehman
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
3
|
Waheed Iqbal M, Riaz T, Hassanin HA, Zhang W, Saeed M, Mahmood S, Abdalla M, Mu W. Biochemical characterization of recombinant L-fucose isomerase from Caldanaerobius polysaccharolyticus for L-fuculose production. Int J Biol Macromol 2020; 146:965-975. [DOI: 10.1016/j.ijbiomac.2019.09.221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/24/2019] [Accepted: 09/20/2019] [Indexed: 01/22/2023]
|
4
|
Characterization of a novel d-arabinose isomerase from Thermanaeromonas toyohensis and its application for the production of d-ribulose and l-fuculose. Enzyme Microb Technol 2019; 131:109427. [DOI: 10.1016/j.enzmictec.2019.109427] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/09/2019] [Accepted: 09/10/2019] [Indexed: 12/18/2022]
|
5
|
Isomerases and epimerases for biotransformation of pentoses. Appl Microbiol Biotechnol 2018; 102:7283-7292. [PMID: 29968034 DOI: 10.1007/s00253-018-9150-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 01/08/2023]
Abstract
Pentoses represent monosaccharides with five carbon atoms. They are organized into two main groups, aldopentoses and ketopentoses. There are eight aldopentoses and four ketopentoses and each ketopentose corresponds to two aldopentoses. Only D-xylose, D-ribose, and L-arabinose are natural sugars, but others belong to rare sugars that occur in very small quantities in nature. Recently, rare pentoses attract much attention because of their great potentials for commercial applications, especially as precursors of many important medical drugs. Pentoses Izumoring strategy provides a complete enzymatic approach to link all pentoses using four types of enzymes, including ketose 3-epimerases, aldose-ketose isomerases, polyol dehydrogenases, and aldose reductases. At least 10 types of epimerases and isomerases have been used for biotransformation of all aldopentoses and ketopentoses, and these enzymes are reviewed in detail in this article.
Collapse
|
6
|
Bhat SA, Faizan M, Ahanger BA, Ahmad S. Anharmonic vibrational spectral analysis of L-(-)-xylose molecule. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2017. [DOI: 10.1142/s0219633617500596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this work, a detailed vibrational analysis of L-(-)-xylose molecule has been carried out. The geometrical parameters and anharmonic spectrum have been calculated and compared with XRD, FTIR (4000–400[Formula: see text]cm[Formula: see text]) and FT-Raman (4000–50[Formula: see text]cm[Formula: see text]) observed data. The simulated data along with IR and Raman intensities were calculated using DFT/B3LYP level of theory in combination with 6-311[Formula: see text]G(d,p) basis set. The experimental and theoretical results are found to be in a good agreement with each other. Moreover, thermodynamic properties, molecular electrostatic potential (MEP) and natural bond orbital (NBO) analysis of L-(-)-xylose are also reported. The calculated HOMO and LUMO energies confirm the charge transfer within the molecule.
Collapse
Affiliation(s)
- Sheeraz Ahmad Bhat
- Department of Physics, National Institute of Technology, Srinagar 190006, India
| | - Mohd Faizan
- Department of Physics, Aligarh Muslim University, Aligarh 202002, India
| | | | - Shabbir Ahmad
- Department of Physics, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
7
|
Li A, Cai L, Chen Z, Wang M, Wang N, Nakanishi H, Gao XD, Li Z. Recent advances in the synthesis of rare sugars using DHAP-dependent aldolases. Carbohydr Res 2017; 452:108-115. [PMID: 29096183 DOI: 10.1016/j.carres.2017.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/04/2017] [Accepted: 10/17/2017] [Indexed: 01/02/2023]
Abstract
The occurrence rates of non-communicable diseases like obesity, diabetes and hyperlipidemia have increased remarkably due to excessive consumption of a high-energy diet. Rare sugars therefore have become increasingly attractive owing to their unique nutritional properties. In the past two decades, various rare sugars have been successfully prepared guided by the "Izumoring strategy". As a valuable complement to the Izumoring approach, the controllable dihydroxyacetone phosphate (DHAP)-dependent aldolases have generally predictable regio- and stereoselectivity, which makes them powerful tools in C-C bond construction and rare sugar production. However, the main disadvantage for this group of aldolases is their strict substrate specificity toward the donor molecule DHAP, a very expensive and relatively unstable compound. Among the current methods involving DHAP, the one that couples DHAP production from inexpensive starting materials (for instance, glycerol, DL-glycerol 3-phosphate, dihydroxyacetone, and glucose) with aldol condensation appears to be the most promising. This review thus focuses on recent advances in the application of L-rhamnulose-1-phosphate aldolase (RhaD), L-fuculose-1-phosphate aldolase (FucA), and D-fructose-1,6-bisphosphate aldolase (FruA) for rare sugar synthesis in vitro and in vivo, while illustrating strategies for supplying DHAP in efficient and economical ways.
Collapse
Affiliation(s)
- Aimin Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Li Cai
- Department of Chemistry, University of South Carolina Lancaster, 476 Hubbard Drive, Lancaster, SC, 29720, USA
| | - Zhou Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Mayan Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Ning Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Hideki Nakanishi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Zijie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
8
|
Shompoosang S, Yoshihara A, Uechi K, Asada Y, Morimoto K. Novel process for producing 6-deoxy monosaccharides from l-fucose by coupling and sequential enzymatic method. J Biosci Bioeng 2015; 121:1-6. [PMID: 26031195 DOI: 10.1016/j.jbiosc.2015.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/15/2015] [Accepted: 04/23/2015] [Indexed: 11/20/2022]
Abstract
We biosynthesized 6-deoxy-L-talose, 6-deoxy-L-sorbose, 6-deoxy-L-gulose, and 6-deoxy-L-idose, which rarely exist in nature, from L-fucose by coupling and sequential enzymatic reactions. The first product, 6-deoxy-L-talose, was directly produced from L-fucose by the coupling reactions of immobilized D-arabinose isomerase and immobilized L-rhamnose isomerase. In one-pot reactions, the equilibrium ratio of L-fucose, L-fuculose, and 6-deoxy-L-talose was 80:9:11. In contrast, 6-deoxy-L-sorbose, 6-deoxy-L-gulose, and 6-deoxy-L-idose were produced from L-fucose by sequential enzymatic reactions. D-Arabinose isomerase converted L-fucose into L-fuculose with a ratio of 88:12. Purified L-fuculose was further epimerized into 6-deoxy-L-sorbose by D-allulose 3-epimerase with a ratio of 40:60. Finally, purified 6-deoxy-L-sorbose was isomerized into both 6-deoxy-L-gulose with an equilibrium ratio of 40:60 by L-ribose isomerase, and 6-deoxy-L-idose with an equilibrium ratio of 73:27 by D-glucose isomerase. Based on the amount of L-fucose used, the production yields of 6-deoxy-L-talose, 6-deoxy-L-sorbose, 6-deoxy-L-gulose, and 6-deoxy-L-idose were 7.1%, 14%, 2%, and 2.4%, respectively.
Collapse
Affiliation(s)
- Sirinan Shompoosang
- The United Graduate School of Agricultural Sciences, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan; Rare Sugar Research Center, Kagawa University, Miki, Kagawa 761-0795, Japan; Institute of Food Research and Product Development, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Akihide Yoshihara
- Rare Sugar Research Center, Kagawa University, Miki, Kagawa 761-0795, Japan
| | - Keiko Uechi
- The United Graduate School of Agricultural Sciences, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan; Rare Sugar Research Center, Kagawa University, Miki, Kagawa 761-0795, Japan
| | - Yasuhiko Asada
- Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan
| | - Kenji Morimoto
- Rare Sugar Research Center, Kagawa University, Miki, Kagawa 761-0795, Japan.
| |
Collapse
|
9
|
Shompoosang S, Yoshihara A, Uechi K, Asada Y, Morimoto K. Enzymatic production of three 6-deoxy-aldohexoses from L-rhamnose. Biosci Biotechnol Biochem 2014; 78:317-25. [PMID: 25036688 DOI: 10.1080/09168451.2014.878217] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
6-Deoxy-L-glucose, 6-deoxy-L-altrose, and 6-deoxy-L-allose were produced from L-rhamnose with an immobilized enzyme that was partially purified (IE) and an immobilized Escherichia coli recombinant treated with toluene (TT). 6-Deoxy-L-psicose was produced from L-rhamnose by a combination of L-rhamnose isomerase (TT-PsLRhI) and D-tagatose 3-epimerase (TT-PcDTE). The purified 6-deoxy-L-psicose was isomerized to 6-deoxy-L-altrose and 6-deoxy-L-allose with L-arabinose isomerase (TT-EaLAI) and L-ribose isomerase (TT-AcLRI), respectively, and then was epimerized to L-rhamnulose with immobilized D-tagatose 3-epimerase (IE-PcDTE). Following purification, L-rhamnulose was converted to 6-deoxy-L-glucose with D-arabinose isomerase (TT-BpDAI). The equilibrium ratios of 6-deoxy-L-psicose:6-deoxy-L-altrose, 6-deoxy-L-psicose:6-deoxy-L-allose, and L-rhamnulose:6-deoxy-L-glucose were 60:40, 40:60, and 27:73, respectively. The production yields of 6-deoxy-L-glucose, 6-deoxy-L-altrose, and 6-deoxy-L-allose from L-rhamnose were 5.4, 14.6, and 25.1%, respectively. These results indicate that the aldose isomerases used in this study acted on 6-deoxy aldohexoses.
Collapse
|
10
|
Tiwari MK, Singh RK, Gao H, Kim T, Chang S, Kim HS, Lee JK. pH-rate profiles of l-arabinitol 4-dehydrogenase from Hypocrea jecorina and its application in l-xylulose production. Bioorg Med Chem Lett 2014; 24:173-6. [DOI: 10.1016/j.bmcl.2013.11.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 11/08/2013] [Accepted: 11/20/2013] [Indexed: 11/30/2022]
|
11
|
Singh RK, Tiwari MK, Singh R, Haw JR, Lee JK. Immobilization of L-arabinitol dehydrogenase on aldehyde-functionalized silicon oxide nanoparticles for L-xylulose production. Appl Microbiol Biotechnol 2013; 98:1095-104. [PMID: 24193245 DOI: 10.1007/s00253-013-5209-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 08/19/2013] [Accepted: 08/21/2013] [Indexed: 01/16/2023]
Abstract
L-Xylulose is a potential starting material for therapeutics. However, its translation into clinical practice has been hampered by its inherently low bioavailability. In addition, the high cost associated with the production of L-xylulose is a major factor hindering its rapid deployment beyond the laboratory. In the current study, L-arabinitol 4-dehydrogenase from Hypocrea jecorina (HjLAD), which catalyzes the conversion of L-arabinitol into L-xylulose, was immobilized onto various carriers, and the immobilized enzymes were characterized. HjLAD covalently immobilized onto silicon oxide nanoparticles showed the highest immobilization efficiency (94.7 %). This report presents a comparative characterization of free and immobilized HjLAD, including its thermostability and kinetic parameters. The thermostability of HjLAD immobilized on silicon oxide nanoparticles was more than 14.2-fold higher than free HjLAD; the t1/2 of HjLAD at 25 °C was enhanced from 190 min (free) to 45 h (immobilized). In addition, the immobilized HjLAD retained 94 % of its initial activity after 10 cycles. When the immobilized HjLAD was used to catalyze the biotransformation of L-arabinitol to L-xylulose, 66 % conversion and a productivity of 7.9 g · h(-1) · L(-1) were achieved. The enhanced thermostability and reusability of HjLAD suggest that immobilization of HjLAD onto silicon oxide nanoparticles has the potential for use in the industrial production of rare sugars.
Collapse
Affiliation(s)
- Raushan Kumar Singh
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 143-701, Korea
| | | | | | | | | |
Collapse
|