• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4610642)   Today's Articles (5052)   Subscriber (49380)
For: Sabet-Azad R, Linares-Pastén JA, Torkelson L, Sardari RRR, Hatti-Kaul R. Coenzyme A-acylating propionaldehyde dehydrogenase (PduP) from Lactobacillus reuteri: kinetic characterization and molecular modeling. Enzyme Microb Technol 2013;53:235-42. [PMID: 23931688 DOI: 10.1016/j.enzmictec.2013.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 05/22/2013] [Accepted: 05/23/2013] [Indexed: 10/26/2022]
Number Cited by Other Article(s)
1
Nguyen TLP, Béal C, Ghorbal S, Saulou-Bérion C. Environmental conditions during glycerol bioconversion affect 3-hydroxypropionic acid bioproduction by Limosilactobacillus reuteri DSM 17938. Biotechnol Prog 2023;39:e3299. [PMID: 36053946 DOI: 10.1002/btpr.3299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/24/2022] [Accepted: 08/28/2022] [Indexed: 11/10/2022]
2
Liang B, Sun G, Zhang X, Nie Q, Zhao Y, Yang J. Recent Advances, Challenges and Metabolic Engineering Strategies in the Biosynthesis of 3-Hydroxypropionic Acid. Biotechnol Bioeng 2022;119:2639-2668. [PMID: 35781640 DOI: 10.1002/bit.28170] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2022] [Accepted: 06/29/2022] [Indexed: 11/07/2022]
3
Nguyen TLP, Saulou-Bérion C, Delettre J, Béal C. Culture conditions affect Lactobacillus reuteri DSM 17938 ability to perform glycerol bioconversion into 3-hydroxypropionic acid. J Biosci Bioeng 2021;131:501-508. [PMID: 33597083 DOI: 10.1016/j.jbiosc.2020.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 11/27/2022]
4
Sharma A, Gupta G, Ahmad T, Kaur B, Hakeem KR. Tailoring cellular metabolism in lactic acid bacteria through metabolic engineering. J Microbiol Methods 2020;170:105862. [DOI: 10.1016/j.mimet.2020.105862] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 01/04/2023]
5
Westbrook AW, Miscevic D, Kilpatrick S, Bruder MR, Moo-Young M, Chou CP. Strain engineering for microbial production of value-added chemicals and fuels from glycerol. Biotechnol Adv 2019;37:538-568. [DOI: 10.1016/j.biotechadv.2018.10.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 10/03/2018] [Accepted: 10/10/2018] [Indexed: 12/22/2022]
6
Jers C, Kalantari A, Garg A, Mijakovic I. Production of 3-Hydroxypropanoic Acid From Glycerol by Metabolically Engineered Bacteria. Front Bioeng Biotechnol 2019;7:124. [PMID: 31179279 PMCID: PMC6542942 DOI: 10.3389/fbioe.2019.00124] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 05/07/2019] [Indexed: 11/13/2022]  Open
7
Riveros-Rosas H, Julián-Sánchez A, Moreno-Hagelsieb G, Muñoz-Clares RA. Aldehyde dehydrogenase diversity in bacteria of the Pseudomonas genus. Chem Biol Interact 2019;304:83-87. [PMID: 30862475 DOI: 10.1016/j.cbi.2019.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/07/2019] [Indexed: 10/27/2022]
8
Hatti-Kaul R, Chen L, Dishisha T, Enshasy HE. Lactic acid bacteria: from starter cultures to producers of chemicals. FEMS Microbiol Lett 2018;365:5087731. [DOI: 10.1093/femsle/fny213] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/29/2018] [Indexed: 12/26/2022]  Open
9
Niu K, Cheng XL, Qin HB, Liu JS, Zheng YG. Investigation of the key factors on 3-hydroxypropionic acid production with different recombinant strains. 3 Biotech 2017;7:314. [PMID: 28955611 DOI: 10.1007/s13205-017-0966-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/07/2017] [Indexed: 12/26/2022]  Open
10
Chen L, Hatti-Kaul R. Exploring Lactobacillus reuteri DSM20016 as a biocatalyst for transformation of longer chain 1,2-diols: Limits with microcompartment. PLoS One 2017;12:e0185734. [PMID: 28957423 PMCID: PMC5619818 DOI: 10.1371/journal.pone.0185734] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/18/2017] [Indexed: 11/18/2022]  Open
11
Redox Balance in Lactobacillus reuteri DSM20016: Roles of Iron-Dependent Alcohol Dehydrogenases in Glucose/ Glycerol Metabolism. PLoS One 2016;11:e0168107. [PMID: 28030590 PMCID: PMC5193401 DOI: 10.1371/journal.pone.0168107] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/24/2016] [Indexed: 11/19/2022]  Open
12
Insight into Coenzyme A cofactor binding and the mechanism of acyl-transfer in an acylating aldehyde dehydrogenase from Clostridium phytofermentans. Sci Rep 2016;6:22108. [PMID: 26899032 PMCID: PMC4762007 DOI: 10.1038/srep22108] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/08/2016] [Indexed: 12/03/2022]  Open
13
Diversity of Lactobacillus reuteri Strains in Converting Glycerol into 3-Hydroxypropionic Acid. Appl Biochem Biotechnol 2015;177:923-39. [PMID: 26319567 DOI: 10.1007/s12010-015-1787-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 07/27/2015] [Indexed: 10/23/2022]
14
Bio-transformation of Glycerol to 3-Hydroxypropionic Acid Using Resting Cells of Lactobacillus reuteri. Curr Microbiol 2015. [PMID: 26204968 DOI: 10.1007/s00284-015-0878-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
15
Linares-Pastén JA, Sabet-Azad R, Pessina L, Sardari RRR, Ibrahim MHA, Hatti-Kaul R. Efficient poly(3-hydroxypropionate) production from glycerol using Lactobacillus reuteri and recombinant Escherichia coli harboring L. reuteri propionaldehyde dehydrogenase and Chromobacterium sp. PHA synthase genes. BIORESOURCE TECHNOLOGY 2015;180:172-176. [PMID: 25600014 DOI: 10.1016/j.biortech.2014.12.099] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/27/2014] [Accepted: 12/29/2014] [Indexed: 06/04/2023]
16
Sabet-Azad R, Sardari RRR, Linares-Pastén JA, Hatti-Kaul R. Production of 3-hydroxypropionic acid from 3-hydroxypropionaldehyde by recombinant Escherichia coli co-expressing Lactobacillus reuteri propanediol utilization enzymes. BIORESOURCE TECHNOLOGY 2015;180:214-221. [PMID: 25614245 DOI: 10.1016/j.biortech.2014.12.109] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 12/30/2014] [Accepted: 12/31/2014] [Indexed: 06/04/2023]
17
Gopi GR, Ganesh N, Pandiaraj S, Sowmiya B, Brajesh RG, Ramalingam S. A Study on Enhanced Expression of 3-Hydroxypropionic
Acid Pathway Genes and Impact on Its Production in Lactobacillus reuteri. Food Technol Biotechnol 2015;53:331-336. [PMID: 27904365 DOI: 10.17113/ftb.53.03.15.3976] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]  Open
18
Dishisha T, Pereyra LP, Pyo SH, Britton RA, Hatti-Kaul R. Flux analysis of the Lactobacillus reuteri propanediol-utilization pathway for production of 3-hydroxypropionaldehyde, 3-hydroxypropionic acid and 1,3-propanediol from glycerol. Microb Cell Fact 2014;13:76. [PMID: 24886501 PMCID: PMC4045878 DOI: 10.1186/1475-2859-13-76] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 05/14/2014] [Indexed: 11/11/2022]  Open
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA