1
|
Capetti CCDM, Ontañon O, Navas LE, Campos E, Simister R, Dowle A, Liberato MV, Pellegrini VDOA, Gómez LD, Polikarpov I. Sugarcane bagasse derived xylooligosaccharides produced by an arabinofuranosidase/xylobiohydrolase from Bifidobacterium longum in synergism with xylanases. Carbohydr Polym 2024; 339:122248. [PMID: 38823916 DOI: 10.1016/j.carbpol.2024.122248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Arabinoxylan is a major hemicellulose in the sugarcane plant cell wall with arabinose decorations that impose steric restrictions on the activity of xylanases against this substrate. Enzymatic removal of the decorations by arabinofuranosidases can allow a more efficient arabinoxylan degradation by xylanases. Here we produced and characterized a recombinant Bifidobacterium longum arabinofuranosidase from glycoside hydrolase family 43 (BlAbf43) and applied it, together with GH10 and GH11 xylanases, to produce xylooligosaccharides (XOS) from wheat arabinoxylan and alkali pretreated sugarcane bagasse. The enzyme synergistically enhanced XOS production by GH10 and GH11 xylanases, being particularly efficient in combination with the latter family of enzymes, with a degree of synergism of 1.7. We also demonstrated that the enzyme is capable of not only removing arabinose decorations from the arabinoxylan and from the non-reducing end of the oligomeric substrates, but also hydrolyzing the xylan backbone yielding mostly xylobiose and xylose in particular cases. Structural studies of BlAbf43 shed light on the molecular basis of the substrate recognition and allowed hypothesizing on the structural reasons of its multifunctionality.
Collapse
Affiliation(s)
- Caio Cesar de Mello Capetti
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense 400, 13566-590 São Carlos, SP, Brazil
| | - Ornella Ontañon
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Los Reseros y N. Repetto, Hurlingham B1686, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Laura E Navas
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Los Reseros y N. Repetto, Hurlingham B1686, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Eleonora Campos
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Los Reseros y N. Repetto, Hurlingham B1686, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Rachael Simister
- Centre for Novel Agricultural Products, Department of Biology, CNAP, University of York, York YO10 5DD, United Kingdom
| | - Adam Dowle
- Technology Facility, Proteomics Laboratory, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Marcelo Vizoná Liberato
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense 400, 13566-590 São Carlos, SP, Brazil
| | | | - Leonardo D Gómez
- Centre for Novel Agricultural Products, Department of Biology, CNAP, University of York, York YO10 5DD, United Kingdom.
| | - Igor Polikarpov
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense 400, 13566-590 São Carlos, SP, Brazil.
| |
Collapse
|
2
|
du Preez LL, van der Walt E, Valverde A, Rothmann C, Neser FWC, Cason ED. A metagenomic survey of the fecal microbiome of the African savanna elephant (Loxodonta africana). Anim Genet 2024; 55:621-643. [PMID: 38923598 DOI: 10.1111/age.13458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
The African savanna elephant (Loxodonta africana) is the largest terrestrial animal on Earth and is found primarily in Southern and Eastern Africa. It is a hindgut, colonic fermenter and subsists on a diet of raw plant materials found in its grazing area. In this study the bacterial, archaeal and fungal populations of seven African savanna elephant fecal metagenomes were first characterized using amplicon sequencing. On the genus level it was observed that the p-1088-a5 gut group in the bacteriome, Methanocorpusulum and Methanobrevibacter in the archaeome and Alternaria, Aurobasidium, Didymella and Preussia in the mycome, predominated. Subsequently, metagenomic shotgun sequencing was employed to identify possible functional pathways and carbohydrate-active enzymes (CAZymes). Carbohydrate catabolic pathways represented the main degradation pathways, and the fecal metagenome was enriched in the glycohydroside (GH) class of CAZymes. Additionally, the top GH families identified - GH43, GH2, GH13 and GH3 - are known to be associated with cellulytic, hemicellulytic and pectolytic activities. Finally, the CAZymes families identified in the African savanna elephant were compared with those found in the Asian elephant and it was demonstrated that there is a unique repository of CAZymes that could be leveraged in the biotechnological context such as the degradation of lignocellulose for the production of second-generation biofuels and energy.
Collapse
Affiliation(s)
- Louis Lategan du Preez
- Department of Animal Science, University of the Free State, Bloemfontein, Free State, South Africa
| | - Elzette van der Walt
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, Free State, South Africa
| | - Angel Valverde
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, Free State, South Africa
- Instituto de Recursos Naturales y Agrobiología de Salamanca, Consejo Superior de Investigaciones Científicas, Salamanca, Spain
| | - Christopher Rothmann
- Department of Animal Science, University of the Free State, Bloemfontein, Free State, South Africa
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, Free State, South Africa
| | | | - Errol Duncan Cason
- Department of Animal Science, University of the Free State, Bloemfontein, Free State, South Africa
| |
Collapse
|
3
|
Kotani Y, Shibata N, Lin MI, Nakazawa M, Ueda M, Sakamoto T. Fractionation of cassava pectins and their detailed structural analyses using various pectinolytic enzymes. Int J Biol Macromol 2024; 269:132054. [PMID: 38704063 DOI: 10.1016/j.ijbiomac.2024.132054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/16/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
In this study, we analyzed the pectin structure within the pulp of cassava. Cassava pectin, derived from cassava pulp treatment at 120 °C for 90 min, was separated into four fractions (CP-P, CP-SD1, CP-SD2F, and CP-SD2R) based on variations in water solubility, electrical properties, and molecular weights. Sugar composition analysis demonstrated an abundance of homogalacturonan (HG) in CP-P and CP-SD2F, rhamnogalacturonan I (RG-I) in CP-SD2R, and neutral sugars in CP-SD1. Because RG-I possesses a complex structure, we analyzed CP-SD2R using various pectinolytic enzymes. Galactose was the major sugar in CP-SD2R accounting for 49 %, of which 65 % originated from arabinogalactan I, 9 % from galactose and galactooligosaccharides, 5 % from arabinogalactan II, and 11 % from galactoarabinan. Seventy-four percent of arabinose in CP-SD2R was present as galactoarabinan. The methylation (DM) and acetylation (DAc) degrees of cassava pectin were 11 and 15 %, respectively. The HG and RG-I regions exhibited DAc values of 5 and 44 %, respectively, signifying the high DAc of RG-I compared to HG. Information derived from the structural analysis of cassava pectin will enable efficient degradation of pectin and cellulose, leading to the use of cassava pulp as a raw material for biorefineries.
Collapse
Affiliation(s)
- Yuka Kotani
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
| | - Nozomu Shibata
- Biological Science Research, Kao Corporation, Wakayama, Wakayama 640-8580, Japan
| | - Meng-I Lin
- Biological Science Research, Kao Corporation, Wakayama, Wakayama 640-8580, Japan
| | - Masami Nakazawa
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
| | - Mitsuhiro Ueda
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
| | - Tatsuji Sakamoto
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan.
| |
Collapse
|
4
|
Si Z, Cai Y, Zhao L, Han L, Wang F, Yang X, Gao X, Lu M, Liu W. Structure and function characterization of the α-L-arabinofuranosidase from the white-rot fungus Trametes hirsuta. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12561-w. [PMID: 37178306 DOI: 10.1007/s00253-023-12561-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023]
Abstract
α-L-Arabinofuranosidases (Abfs) play a crucial role in the degradation of hemicelluloses, especially arabinoxylans (AX). Most of the available characterized Abfs are from bacteria, while fungi, as natural decomposers, contain Abfs with little attention given. An arabinofuranosidase (ThAbf1), belonging to the glycoside hydrolase 51 (GH51) family, from the genome of the white-rot fungus Trametes hirsuta, was recombinantly expressed, characterized, and functionally determined. The general biochemical properties showed that the optimal conditions for ThAbf1 were pH 6.0 and 50°C. In substrate kinetics assays, ThAbf1 preferred small fragment arabinoxylo-oligosaccharides (AXOS) and could surprisingly hydrolyze di-substituted 23,33-di-L-arabinofuranosyl-xylotriose (A2,3XX). It also synergized with commercial xylanase (XYL) and increased the saccharification efficiency of arabinoxylan. The crystal structure of ThAbf1 indicated the presence of an adjacent cavity next to the catalytic pocket which led to the ability of ThAbf1 to degrade di-substituted AXOS. The narrow binding pocket prevents ThAbf1 from binding larger substrates. These findings have strengthened our understanding of the catalytic mechanism of GH51 family Abfs and provided a theoretical foundation for the development of more efficient and versatile Abfs to accelerate the degradation and biotransformation of hemicellulose in biomass. KEY POINTS: • ThAbf1 from Trametes hirsuta degraded di-substituted arabinoxylo-oligosaccharide. • ThAbf1 performed detailed biochemical characterization and kinetics. • ThAbf1 structure has been obtained to illustrate the substrate specificity.
Collapse
Affiliation(s)
- Zhenyuan Si
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, College of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yang Cai
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, College of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Lang Zhao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, College of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Lu Han
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, College of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Feng Wang
- Simcere Pharmaceutical Group Limited, Nanjing, 210042, PR China
| | - Xiaobing Yang
- Biology and Medicine Department, Jiangsu Industrial Technology Research Institute, Nanjing, 210031, PR China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, College of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Meiling Lu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, College of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Wei Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, College of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
5
|
Leschonski KP, Kaasgaard SG, Spodsberg N, Krogh KBRM, Kabel MA. Two Subgroups within the GH43_36 α-l-Arabinofuranosidase Subfamily Hydrolyze Arabinosyl from Either Mono-or Disubstituted Xylosyl Units in Wheat Arabinoxylan. Int J Mol Sci 2022; 23:ijms232213790. [PMID: 36430284 PMCID: PMC9693073 DOI: 10.3390/ijms232213790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Fungal arabinofuranosidases (ABFs) catalyze the hydrolysis of arabinosyl substituents (Ara) and are key in the interplay with other glycosyl hydrolases to saccharify arabinoxylans (AXs). Most characterized ABFs belong to GH51 and GH62 and are known to hydrolyze the linkage of α-(1→2)-Ara and α-(1→3)-Ara in monosubstituted xylosyl residues (Xyl) (ABF-m2,3). Nevertheless, in AX a substantial number of Xyls have two Aras (i.e., disubstituted), which are unaffected by ABFs from GH51 and GH62. To date, only two fungal enzymes have been identified (in GH43_36) that specifically release the α-(1→3)-Ara from disubstituted Xyls (ABF-d3). In our research, phylogenetic analysis of available GH43_36 sequences revealed two major clades (GH43_36a and GH43_36b) with an expected substrate specificity difference. The characterized fungal ABF-d3 enzymes aligned with GH43_36a, including the GH43_36 from Humicola insolens (HiABF43_36a). Hereto, the first fungal GH43_36b (from Talaromyces pinophilus) was cloned, purified, and characterized (TpABF43_36b). Surprisingly, TpABF43_36b was found to be active as ABF-m2,3, albeit with a relatively low rate compared to other ABFs tested, and showed minor xylanase activity. Novel specificities were also discovered for the HiABF43_36a, as it also released α-(1→2)-Ara from a disubstitution on the non-reducing end of an arabinoxylooligosaccharide (AXOS), and it was active to a lesser extent as an ABF-m2,3 towards AXOS when the Ara was on the second xylosyl from the non-reducing end. In essence, this work adds new insights into the biorefinery of agricultural residues.
Collapse
Affiliation(s)
| | | | | | | | - Mirjam A. Kabel
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| |
Collapse
|
6
|
Liu G, Qu Y. Integrated engineering of enzymes and microorganisms for improving the efficiency of industrial lignocellulose deconstruction. ENGINEERING MICROBIOLOGY 2021; 1:100005. [PMID: 39629162 PMCID: PMC11610957 DOI: 10.1016/j.engmic.2021.100005] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/17/2021] [Accepted: 10/04/2021] [Indexed: 12/07/2024]
Abstract
Bioconversion of lignocellulosic biomass to fuels and chemicals represents a new manufacturing paradigm that can help address society's energy, resource, and environmental problems. However, the low efficiency and high cost of lignocellulolytic enzymes currently used hinder their use in the industrial deconstruction of lignocellulose. To overcome these challenges, research efforts have focused on engineering the properties, synergy, and production of lignocellulolytic enzymes. First, lignocellulolytic enzymes' catalytic efficiency, stability, and tolerance to inhibitory compounds have been improved through enzyme mining and engineering. Second, synergistic actions between different enzyme components have been strengthened to construct customized enzyme cocktails for the degradation of specific lignocellulosic substrates. Third, biological processes for protein synthesis and cell morphogenesis in microorganisms have been engineered to achieve a high level and low-cost production of lignocellulolytic enzymes. In this review, the relevant progresses and challenges in these fields are summarized. Integrated engineering is proposed to be essential to achieve cost-effective enzymatic deconstruction of lignocellulose in the future.
Collapse
Affiliation(s)
- Guodong Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| | - Yinbo Qu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| |
Collapse
|
7
|
Lemaire A, Duran Garzon C, Perrin A, Habrylo O, Trezel P, Bassard S, Lefebvre V, Van Wuytswinkel O, Guillaume A, Pau-Roblot C, Pelloux J. Three novel rhamnogalacturonan I- pectins degrading enzymes from Aspergillus aculeatinus: Biochemical characterization and application potential. Carbohydr Polym 2020; 248:116752. [DOI: 10.1016/j.carbpol.2020.116752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 10/23/2022]
|
8
|
Thakur A, Sharma K, Jamaldheen SB, Goyal A. Molecular Characterization, Regioselective and Synergistic Action of First Recombinant Type III α-L-arabinofuranosidase of Family 43 Glycoside Hydrolase (PsGH43_12) from Pseudopedobacter saltans. Mol Biotechnol 2020; 62:443-455. [DOI: 10.1007/s12033-020-00263-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2020] [Indexed: 01/26/2023]
|
9
|
Noguchi M, Hasegawa Y, Suzuki S, Nakazawa M, Ueda M, Sakamoto T. Determination of chemical structure of pea pectin by using pectinolytic enzymes. Carbohydr Polym 2020; 231:115738. [PMID: 31888846 DOI: 10.1016/j.carbpol.2019.115738] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 12/21/2022]
Abstract
The chemical structure of pea pectin was delineated using pectin-degrading enzymes and biochemical methods. The molecular weight of the pea pectin preparation was 488,000, with 50 % arabinose content, and neutral sugar side chains attached to approximately 60 % of the rhamnose residues in rhamnogalacturonan-I (RG-I). Arabinan, an RG-I side chain, was highly branched, and the main chain was comprised of α-1,5-l-arabinan. Galactose and galactooligosaccharides were attached to approximately 35 % of the rhamnose residues in RG-I. Long chain β-1,4-galactan was also present. The xylose substitution rate in xylogalacturonan (XGA) was 63 %. The molar ratio of RG-I/homogalacturonan (HG)/XGA in the backbone of the pea pectin was approximately 3:3:4. When considering neutral sugar side chain content (arabinose, galactose, and xylose), the molar ratio of RG-I/HG/XGA regions in the pea pectin was 7:1:2. These data will help understand the properties of pea pectin.
Collapse
Affiliation(s)
- Misaki Noguchi
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan.
| | | | - Shiho Suzuki
- Center for Research and Development of Bioresources, Organization for Research Promotion, Osaka Prefecture University, Sakai, Osaka 599-8570, Japan.
| | - Masami Nakazawa
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan.
| | - Mitsuhiro Ueda
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan.
| | - Tatsuji Sakamoto
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan.
| |
Collapse
|
10
|
Kondo T, Nishimura Y, Matsuyama K, Ishimaru M, Nakazawa M, Ueda M, Sakamoto T. Characterization of three GH35 β-galactosidases, enzymes able to shave galactosyl residues linked to rhamnogalacturonan in pectin, from Penicillium chrysogenum 31B. Appl Microbiol Biotechnol 2019; 104:1135-1148. [DOI: 10.1007/s00253-019-10299-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/24/2019] [Accepted: 12/03/2019] [Indexed: 11/29/2022]
|
11
|
Tu T, Li X, Meng K, Bai Y, Wang Y, Wang Z, Yao B, Luo H. A GH51 α-L-arabinofuranosidase from Talaromyces leycettanus strain JCM12802 that selectively drives synergistic lignocellulose hydrolysis. Microb Cell Fact 2019; 18:138. [PMID: 31426823 PMCID: PMC6699109 DOI: 10.1186/s12934-019-1192-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/10/2019] [Indexed: 12/29/2022] Open
Abstract
Background The development of sustainable technologies for plant cell wall degradation greatly depends on enzymes with hydrolytic activities against carbohydrates. The waste by-products of agricultural cereals are important biomass sources because they contain large amounts of saccharides. Achieving efficient debranching and depolymerization are two important objectives for increasing the utilization of such renewable bioresources. GH51 α-l-arabinofuranosidases are important in biomass pretreatment because they act synergistically with other enzymes during hemicellulose hydrolysis. Results A GH51 α-l-arabinofuranosidase from Talaromyces leycettanus JCM12802 was heterologously expressed in Pichia pastoris GS115 and characterized. The recombinant α-l-arabinofuranosidase, TlAbf51, showed an optimum temperature and pH of 55–60 °C and 3.5–4.0, respectively, and remained stable at 50 °C and pH 3.0–9.0. TlAbf51 showed a higher catalytic efficiency (5712 mM−1 s−1) than most fungal α-l-arabinofuranosidases towards the substrate 4-nitrophenyl-α-l-arabinofuranoside. Moreover, TlAbf51 preferentially removed 1,2- or 1,3-linked arabinofuranose residues from arabinoxylan and acted synergistically with the bifunctional xylanase/cellulase TcXyn10A at an activity ratio of 5:1. The highest yields of arabinose and xylooligosaccharides were obtained when TlAbf51 was added after TcXyn10A or when both enzymes were added simultaneously. High-performance anion-exchange chromatography analyses showed that (i) arabinose and xylooligosaccharides with low degrees of polymerization (DP1–DP5) and (ii) arabinose and xylooligosaccharides (DP1–DP3) were the major hydrolysates obtained during the hydrolysis of sodium hydroxide-pretreated cornstalk and corn bran, respectively. Conclusions In contrast to other fungal GH51 α-l-arabinofuranosidases, recombinant TlAbf51 showed excellent stability over a broad pH range and high catalytic efficiency. Moreover, TlAbf51 acted synergistically with another hemicellulase to digest arabino-polysaccharides. These favorable enzymatic properties make TlAbf51 attractive for biomass pretreatment and biofuel production. Electronic supplementary material The online version of this article (10.1186/s12934-019-1192-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tao Tu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China.
| | - Xiaoli Li
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Kun Meng
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Yingguo Bai
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Yuan Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Zhenxing Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Huiying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China.
| |
Collapse
|
12
|
Gao L, Li S, Xu Y, Xia C, Xu J, Liu J, Qin Y, Song X, Liu G, Qu Y. Mutation of a Conserved Alanine Residue in Transcription Factor AraR Leads to Hyperproduction of α‐l‐Arabinofuranosidases inPenicillium oxalicum. Biotechnol J 2019; 14:e1800643. [DOI: 10.1002/biot.201800643] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/20/2018] [Accepted: 01/02/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Liwei Gao
- State Key Laboratory of Microbial TechnologyShandong University27 Binhai Road 266237 Qingdao China
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghai China
| | - Shiying Li
- State Key Laboratory of Microbial TechnologyShandong University27 Binhai Road 266237 Qingdao China
| | - Yanning Xu
- State Key Laboratory of Microbial TechnologyShandong University27 Binhai Road 266237 Qingdao China
| | - Chengqiang Xia
- State Key Laboratory of Microbial TechnologyShandong University27 Binhai Road 266237 Qingdao China
| | - Jiadi Xu
- State Key Laboratory of Microbial TechnologyShandong University27 Binhai Road 266237 Qingdao China
- National Glycoengineering Research CenterShandong UniversityQingdao China
| | - Jun Liu
- State Key Laboratory of Microbial TechnologyShandong University27 Binhai Road 266237 Qingdao China
| | - Yuqi Qin
- State Key Laboratory of Microbial TechnologyShandong University27 Binhai Road 266237 Qingdao China
- National Glycoengineering Research CenterShandong UniversityQingdao China
| | - Xin Song
- State Key Laboratory of Microbial TechnologyShandong University27 Binhai Road 266237 Qingdao China
| | - Guodong Liu
- State Key Laboratory of Microbial TechnologyShandong University27 Binhai Road 266237 Qingdao China
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghai China
| | - Yinbo Qu
- State Key Laboratory of Microbial TechnologyShandong University27 Binhai Road 266237 Qingdao China
- National Glycoengineering Research CenterShandong UniversityQingdao China
| |
Collapse
|
13
|
The modular arabinanolytic enzyme Abf43A-Abf43B-Abf43C from Ruminiclostridium josui consists of three GH43 modules classified in different subfamilies. Enzyme Microb Technol 2019; 124:23-31. [PMID: 30797476 DOI: 10.1016/j.enzmictec.2019.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/18/2019] [Accepted: 01/29/2019] [Indexed: 11/20/2022]
Abstract
The abnA gene from Ruminiclostridium josui encodes the large modular arabinanolytic enzyme, Abf43A-Abf43B-Abf43C, consisting of an N-terminal signal peptide, a Laminin_G_3 module, a GH43_22 module, a Laminin_G_3 module, a Big_4 module, a GH43_26 module, a GH43_34 module and a dockerin module in order with a calculated molecular weight of 204,108. Three truncated enzymes were recombinantly produced in Escherichia coli and biochemically characterized, RjAbf43A consisting of the first Laminin_G_3 module and GH43_22 module, RjAbf43B consisting of the second Laminin_G_3 module, Big_4 module and GH43_26 module, and RjAbf43C consisting of the GH43_34 module. RjAbf43A showed a strong α-l-arabinofuranosidase activity toward sugar beet arabinan, highly branched arabinan but not linear arabinan, thus it acted in the removal of arabinose side chains from sugar beet arabinan. By contrast, RjAbf43B showed a strong exo-α-1,5-l-arabinofuranosidase activity toward linear arabinan and arabinooligosaccharides whereas RjAbf43C showed low activity toward these substrates. Although RjAbf43B was activated by the presence of some metal ions such as Zn2+, Mg2+ and Ni2+, RjAbf43A was inhibited by these ions. RjAbf43A and RjAbf43B attacked sugar beet arabinan in a synergistic manner. By comparison, RjAbf43A-Abf43B containing both GH43_22 and GH43_26 modules showed lower hydrolytic activity toward sugar beet arabinan but higher activity toward sugar beet fiber than the sum of the individual activities of RjAbf43A and RjAbf43B, suggesting that the coexistence of two distinct GH43 modules in a single polypeptide is important for the efficient hydrolysis of an insoluble and natural polysaccharide but not a soluble substrate.
Collapse
|
14
|
α-l-Arabinofuranosidase: A Potential Enzyme for the Food Industry. ENERGY, ENVIRONMENT, AND SUSTAINABILITY 2019. [DOI: 10.1007/978-981-13-3263-0_12] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Degradative enzymes for type II arabinogalactan side chains in Bifidobacterium longum subsp. longum. Appl Microbiol Biotechnol 2018; 103:1299-1310. [PMID: 30564851 DOI: 10.1007/s00253-018-9566-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 10/27/2022]
Abstract
Type II arabinogalactan (AG) is a soluble prebiotic fiber stimulating the proliferation of bifidobacteria in the human gut. Larch AG, which is comprised of type II AG, is known to be utilized as an energy source for Bifidobacterium longum subsp. longum (B. longum). We have previously characterized GH43_24 exo-β-1,3-galactanase (Bl1,3Gal) for the degradation of type II AG main chains in B. longum JCM1217. In this study, we characterized GH30_5 exo-β-1,6-galactobiohydrolase (Bl1,6Gal) and GH43_22 α-L-arabinofuranosidase (BlArafA), which are degradative enzymes for type II AG side chains in cooperation with exo-β-1,3-galactanase. The recombinant exo-β-1,6-galactobiohydrolase specifically released β-1,6-galactobiose (β-1,6-Gal2) from the nonreducing terminal of β-1,6-galactooligosaccharides, and the recombinant α-L-arabinofuranosidase released arabinofuranose (Araf) from α-1,3-Araf-substituted β-1,6-galactooligosaccharides. β-1,6-Gal2 was additively released from larch AG by the combined use of type II AG degradative enzymes, including Bl1,3Gal, Bl1,6Gal, and BlArafA. The gene cluster encoding the type II AG degradative enzymes is conserved in all B. longum strains, but not in other bifidobacterial species. The degradative enzymes for type II AG side chains are thought to be important for the acquisition of type II AG in B. longum.
Collapse
|
16
|
Gao J, Zhao Y, Zhang G, Li Y, Li Q. Production optimization, purification, expression, and characterization of a novel α-l-arabinofuranosidase from Paenibacillus polymyxa. ELECTRON J BIOTECHN 2018. [DOI: 10.1016/j.ejbt.2018.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
17
|
Identification and characterization of GH62 bacterial α-l-arabinofuranosidase from thermotolerant Streptomyces sp. SWU10 that preferentially degrades branched l-arabinofuranoses in wheat arabinoxylan. Enzyme Microb Technol 2018; 112:22-28. [DOI: 10.1016/j.enzmictec.2018.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/27/2018] [Accepted: 01/27/2018] [Indexed: 11/21/2022]
|
18
|
Matsumoto S, Yamada H, Kunishige Y, Takenaka S, Nakazawa M, Ueda M, Sakamoto T. Identification of a novel Penicillium chrysogenum rhamnogalacturonan rhamnohydrolase and the first report of a rhamnogalacturonan rhamnohydrolase gene. Enzyme Microb Technol 2017; 98:76-85. [DOI: 10.1016/j.enzmictec.2016.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/04/2016] [Accepted: 12/26/2016] [Indexed: 01/29/2023]
|
19
|
Shinozaki A, Hosokawa S, Nakazawa M, Ueda M, Sakamoto T. Identification and characterization of three Penicillium chrysogenum α-l-arabinofuranosidases (PcABF43B, PcABF51C, and AFQ1) with different specificities toward arabino-oligosaccharides. Enzyme Microb Technol 2015; 73-74:65-71. [DOI: 10.1016/j.enzmictec.2015.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/06/2015] [Accepted: 04/09/2015] [Indexed: 11/27/2022]
|
20
|
Iwai M, Kawakami T, Ikemoto T, Fujiwara D, Takenaka S, Nakazawa M, Ueda M, Sakamoto T. Molecular characterization of a Penicillium chrysogenum exo-rhamnogalacturonan lyase that is structurally distinct from other polysaccharide lyase family proteins. Appl Microbiol Biotechnol 2015; 99:8515-25. [PMID: 25921806 DOI: 10.1007/s00253-015-6600-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/14/2015] [Accepted: 04/01/2015] [Indexed: 10/23/2022]
Abstract
We previously described an endo-acting rhamnogalacturonan (RG) lyase, termed PcRGL4A, of Penicillium chrysogenum 31B. Here, we describe a second RG lyase, called PcRGLX. We determined the cDNA sequence of the Pcrglx gene, which encodes PcRGLX. Based on analyses using a BLAST search and a conserved domain search, PcRGLX was found to be structurally distinct from known RG lyases and might belong to a new polysaccharide lyase family together with uncharacterized fungal proteins of Nectria haematococca, Aspergillus oryzae, and Fusarium oxysporum. The Pcrglx cDNA gene product (rPcRGLX) expressed in Escherichia coli demonstrated specific activity against RG but not against homogalacturonan. Divalent cations were not essential for the enzymatic activity of rPcRGLX. rPcRGLX mainly released unsaturated galacturonosyl rhamnose (ΔGR) from RG backbones used as the substrate from the initial stage of the reaction, indicating that the enzyme can be classified as an exo-acting RG lyase (EC 4.2.2.24). This is the first report of an RG lyase with this mode of action in Eukaryota. rPcRGLX acted synergistically with PcRGL4A to degrade soybean RG and released ΔGR. This ΔGR was partially decorated with galactose (Gal) residues, indicating that rPcRGLX preferred oligomeric RGs to polymeric RGs, that the enzyme did not require Gal decoration of RG backbones for degradation, and that the enzyme bypassed the Gal side chains of RG backbones. These characteristics of rPcRGLX might be useful in the determination of complex structures of pectins.
Collapse
Affiliation(s)
- Marin Iwai
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Takuya Kawakami
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Takeshi Ikemoto
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Daisuke Fujiwara
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Shigeo Takenaka
- Division of Veterinary science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, 598-8531, Japan
| | - Masami Nakazawa
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Mitsuhiro Ueda
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Tatsuji Sakamoto
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan.
| |
Collapse
|
21
|
Biochemical Characterization and Overexpression of an Endo-rhamnogalacturonan Lyase from Penicillium chrysogenum. Mol Biotechnol 2015; 57:539-48. [DOI: 10.1007/s12033-015-9847-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
22
|
Molecular modeling and MM-PBSA free energy analysis of endo-1,4-β-xylanase from Ruminococcus albus 8. Int J Mol Sci 2014; 15:17284-303. [PMID: 25264743 PMCID: PMC4227162 DOI: 10.3390/ijms151017284] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/11/2014] [Accepted: 09/15/2014] [Indexed: 11/16/2022] Open
Abstract
Endo-1,4-β-xylanase (EC 3.2.1.8) is the enzyme from Ruminococcus albus 8 (R. albus 8) (Xyn10A), and catalyzes the degradation of arabinoxylan, which is a major cell wall non-starch polysaccharide of cereals. The crystallographic structure of Xyn10A is still unknown. For this reason, we report a computer-assisted homology study conducted to build its three-dimensional structure based on the known sequence of amino acids of this enzyme. In this study, the best similarity was found with the Clostridium thermocellum (C. thermocellum) N-terminal endo-1,4-β-D-xylanase 10 b. Following the 100 ns molecular dynamics (MD) simulation, a reliable model was obtained for further studies. Molecular Mechanics/Poisson-Boltzmann Surface Area (MM-PBSA) methods were used for the substrate xylotetraose having the reactive sugar, which was bound in the -1 subsite of Xyn10A in the 4C1 (chair) and 2SO (skew boat) ground state conformations. According to the simulations and free energy analysis, Xyn10A binds the substrate with the -1 sugar in the 2SO conformation 39.27 kcal·mol(-1) tighter than the substrate with the sugar in the 4C1 conformation. According to the Xyn10A-2SO Xylotetraose (X4(sb) interaction energies, the most important subsite for the substrate binding is subsite -1. The results of this study indicate that the substrate is bound in a skew boat conformation with Xyn10A and the -1 sugar subsite proceeds from the 4C1 conformation through 2SO to the transition state. MM-PBSA free energy analysis indicates that Asn187 and Trp344 in subsite -1 may an important residue for substrate binding. Our findings provide fundamental knowledge that may contribute to further enhancement of enzyme performance through molecular engineering.
Collapse
|