1
|
Fang Y, Wu D, Gao N, Lv M, Zhou M, Ma C, Sun Y, Cui B. Whole-genome sequencing and comparative genomic analyses of the medicinal fungus Sanguinoderma infundibulare in Ganodermataceae. G3 (BETHESDA, MD.) 2024; 14:jkae005. [PMID: 38366555 PMCID: PMC10989896 DOI: 10.1093/g3journal/jkae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/05/2024] [Indexed: 02/18/2024]
Abstract
Sanguinoderma infundibulare is a newly discovered species of Ganodermataceae known to have high medicinal and ecological values. In this study, the whole-genome sequencing and comparative genomic analyses were conducted to further understand Ganodermataceae's genomic structural and functional characteristics. Using the Illumina NovaSeq and PacBio Sequel platforms, 88 scaffolds were assembled to obtain a 48.99-Mb high-quality genome of S. infundibulare. A total of 14,146 protein-coding genes were annotated in the whole genome, with 98.6% of complete benchmarking universal single-copy orthologs (BUSCO) scores. Comparative genomic analyses were conducted among S. infundibulare, Sanguinoderma rugosum, Ganoderma lucidum, and Ganoderma sinense to determine their intergeneric differences. The 4 species were found to share 4,011 orthogroups, and 24 specific gene families were detected in the genus Sanguinoderma. The gene families associated with carbohydrate esterase in S. infundibulare were significantly abundant, which was reported to be involved in hemicellulose degradation. One specific gene family in Sanguinoderma was annotated with siroheme synthase, which may be related to the typical characteristics of fresh pore surface changing to blood red when bruised. This study enriched the available genome data for the genus Sanguinoderma, elucidated the differences between Ganoderma and Sanguinoderma, and provided insights into the characteristics of the genome structure and function of S. infundibulare.
Collapse
Affiliation(s)
- Yuxuan Fang
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Dongmei Wu
- Xinjiang Production and Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832061, China
| | - Neng Gao
- Xinjiang Production and Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832061, China
| | - Mengxue Lv
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Miao Zhou
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Chuangui Ma
- Beijing Jingcheng Biotechnology Co., Ltd, Beijing 100083, China
| | - Yifei Sun
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Baokai Cui
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
2
|
Monica P, Ranjan R, Kapoor M. Family 3 CBM improves the biochemical properties, substrate hydrolysis and coconut oil extraction by hemicellulolytic and holocellulolytic chimeras. Enzyme Microb Technol 2024; 174:110375. [PMID: 38157781 DOI: 10.1016/j.enzmictec.2023.110375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/10/2023] [Accepted: 12/07/2023] [Indexed: 01/03/2024]
Abstract
To understand the influence of family 3 Carbohydrate Binding Module (hereafter CBM3), single (GH5 cellulase; CelB, CelBΔCBM), bi-chimeric [GH26 endo-mannanase (ManB-1601) and GH11 endo-xylanase (XynB); ManB-XynB [1], ManB-XynB-CBM] and tri-chimeric [ManB-XynB-CelB [1], ManB-XynB-CelBΔCBM] enzyme variants (fused or deleted of CBM) were produced and purified to homogeneity. CBM3 did not alter the pH and temperature optima of bi- and tri-chimeric enzymes but improved the pH and temperature stability of ManB in CBM variants of bi-/tri-chimeric enzymes. Truncation of CBM in CelB shifted the pH optimum and increased the melting temperature (Tm 65 ℃). CBM3 improved both substrate affinity (Km) and catalytic efficiency (kcat/Km) of fused enzymes in tri-chimera and CelB but only Km for bi-chimera. Far-UV CD of CelB and bi- and tri-chimeric enzymes suggested that CBM3 improved the α-helical content and compactness in the native state but did not prevent disintegration of secondary structural contents at acidic pH. Steady-state fluorescence studies suggested that under acidic conditions CBM3 prevented the exposure of hydrophobic patches in bi-chimeric protein but could not avert the opening up of chimeric enzyme structure. Aqueous enzyme assisted treatment of mature coconut kernel using single, bi- and tri-chimeric enzymes led to cracks, peeling and fracturing of the matrix and improved the oil yield by up to 22%.
Collapse
Affiliation(s)
- P Monica
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, UP, India
| | - Ritesh Ranjan
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India
| | - Mukesh Kapoor
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, UP, India.
| |
Collapse
|
3
|
Xiong K, Yan ZX, Liu JY, Pei PG, Deng L, Gao L, Sun BG. Inter domain interactions influence the substrate affinity and hydrolysis product specificity of xylanase from Streptomyces chartreusis L1105. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01560-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Abstract
Purpose
This study investigated the influence of inter-domain interactions on the substrate affinity and hydrolysis product specificity of xylanase.
Methods
Genes encoding a GH10 endo-xylanase from Streptomyces chartreusis L1105 xynA and its truncated derivative were cloned and expressed in Escherichia coli. The catalytic activities of the enzyme (xynA) and the derivative xynADCBM, lacking the carbohydrate binding module (CBM), were assessed to evaluate the role of CBM in xynA.
Results
Recombinant xynA (44 kDa) was found to be optimally active on beechwood xylan at 65 °C with pH 7.7, while xynADCBM (34 kDa) exhibited optimal activity at 65 °C with pH 7.2. Additionally, xynA and xynADCBM were found to be highly thermostable at 40–60 °C, each retaining 80% of their original activity after 30 min. The xynADCBM without the CBM domain was highly efficient at hydrolyzing xylan to produce xylobiose (over 67%), which may be because the CBM domain facilitates substrate binding with xylanase. Meanwhile, the xylan hydrolysis efficiency of xynADCBM was higher than that of xynA.
Conclusion
These findings showed that the CBM domain with non-catalytic activity has no significant effect on the characteristics of the enzyme at optimum pH and pH tolerance. It has also been suggested that the derivative xynADCBM without CBM components can promote hydrolysis of xylan to yield xylooligosaccharides, which has great potential economic benefits.
Collapse
|
4
|
Ramos-Martinez EM, Fimognari L, Rasmussen MK, Sakuragi Y. Secretion of Acetylxylan Esterase From Chlamydomonas reinhardtii Enables Utilization of Lignocellulosic Biomass as a Carbon Source. Front Bioeng Biotechnol 2019; 7:35. [PMID: 30873405 PMCID: PMC6403119 DOI: 10.3389/fbioe.2019.00035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/08/2019] [Indexed: 11/13/2022] Open
Abstract
Microalgae offer a promising biological platform for sustainable biomanufacturing of a wide range of chemicals, pharmaceuticals, and fuels. The model microalga Chlamydomonas reinhardtii is thus far the most versatile algal chassis for bioengineering and can grow using atmospheric CO2 and organic carbons (e.g., acetate and pure cellulose). Ability to utilize renewable feedstock like lignocellulosic biomass as a carbon source could significantly accelerate microalgae-based productions, but this is yet to be demonstrated. We observed that C. reinhardtii was not able to heterotrophically grow using wheat straw, a common type of lignocellulosic biomass, likely due to the recalcitrant nature of the biomass. When the biomass was pretreated with alkaline, C. reinhardtii was able to grow using acetate that was released from the biomass. To establish an eco-friendly and self-sustained growth system, we engineered C. reinhardtii to secrete a fungal acetylxylan esterase (AXE) for hydrolysis of acetylesters in the lignocellulosic biomass. Two transgenic strains (CrAXE03 and CrAXE23) secreting an active AXE into culture media were isolated. Incubation of CrAXE03 with wheat straw resulted in an eight-fold increase in the algal cell counts with a concomitant decrease of biomass acetylester contents by 96%. The transgenic lines showed minor growth defects compared to the parental strain, indicating that secretion of the AXE protein imposes limited metabolic burden. The results presented here would open new opportunities for applying low-cost renewable feedstock, available in large amounts as agricultural and manufacturing by-products, for microalgal cultivation. Furthermore, acetylesters and acetate released from them, are well-known inhibitors in lignocellulosic biofuel productions; thus, direct application of the bioengineered microalga could be exploited for improving renewable biofuel productions.
Collapse
Affiliation(s)
| | | | | | - Yumiko Sakuragi
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
5
|
Synergistic effect of acetyl xylan esterase from Talaromyces leycettanus JCM12802 and xylanase from Neocallimastix patriciarum achieved by introducing carbohydrate-binding module-1. AMB Express 2019; 9:13. [PMID: 30694400 PMCID: PMC6351639 DOI: 10.1186/s13568-019-0740-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/23/2019] [Indexed: 12/17/2022] Open
Abstract
Wheat bran is an effective raw material for preparation xylooligosaccharides; however, current research mainly focuses on alkali extraction and enzymatic hydrolysis methods. Since ester bonds are destroyed during the alkali extraction process, xylanase and arabinofuranosidase are mainly used to hydrolyze xylooligosaccharides. However, alkali extraction costs are very high, and the method also causes pollution. Therefore, this study focuses on elucidating a method to efficiently and directly degrade destarched wheat bran. First, an acidic acetyl xylan esterase (AXE) containing a carbohydrate-binding module-1 (CBM1) domain was cloned from Talaromyces leycettanus JCM12802 and successfully expressed in Pichia pastoris. Characterization showed that the full-length acetyl xylan esterase AXE + CBM1 was similar toe uncovered AXE with an optimum temperature and pH of 55 °C and 6.5, respectively. Testing the acetyl xylan esterase and xylanase derived from Neocallimastix patriciarum in a starch-free wheat bran cooperative experiment revealed that AXE + CBM1 and AXE produced 29% and 16% reducing sugars respectively, compared to when only NPXYN11 was used. In addition, introduced the CBM1 domain into NPXYN11, and the results indicated that the CBM1 domain showed little effect on NPXYN11 properties. Finally, the systematically synergistic effects between acetyl xylan esterase and xylanase with/without the CBM1 domain demonstrated that the combined ratio of AXE + CBM1 coming in first and NPXYN11 + CBM1 s increased reducing sugars by almost 35% with AXE and NPXYN11. Furthermore, each component's proportion remained the same with respect to xylooligosaccharides, with the largest proportion (86%) containing of 49% xylobiose and 37% xylotriose.
Collapse
|
6
|
Mai-Gisondi G, Maaheimo H, Chong SL, Hinz S, Tenkanen M, Master E. Functional comparison of versatile carbohydrate esterases from families CE1, CE6 and CE16 on acetyl-4-O-methylglucuronoxylan and acetyl-galactoglucomannan. Biochim Biophys Acta Gen Subj 2017; 1861:2398-2405. [PMID: 28591625 DOI: 10.1016/j.bbagen.2017.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 05/30/2017] [Accepted: 06/02/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND The backbone structure of many hemicelluloses is acetylated, which presents a challenge when the objective is to convert corresponding polysaccharides to fermentable sugars or else recover hemicelluloses for biomaterial applications. Carbohydrate esterases (CE) can be harnessed to overcome these challenges. METHODS Enzymes from different CE families, AnAcXE (CE1), OsAcXE (CE6), and MtAcE (CE16) were compared based on action and position preference towards acetyl-4-O-methylglucuronoxylan (MGX) and acetyl-galactoglucomannan (GGM). To determine corresponding positional preferences, the relative rate of acetyl group released by each enzyme was analyzed by real time 1H NMR. RESULTS AnAcXE (CE1) showed lowest specific activity towards MGX, where OsAcXE (CE6) and MtAcE were approximately four times more active than AnAcXE (CE1). MtAcE (CE16) was further distinguished by demonstrating 100 times higher activity on GGM compared to AnAcXE (CE1) and OsAcXE (CE6), and five times higher activity on GGM than MGX. Following 24h incubation, all enzymes removed between 78 and 93% of total acetyl content from MGX and GGM, where MtAcE performed best on both substrates. MAJOR CONCLUSIONS Considering action on MGX, all esterases showed preference for doubly substituted xylopyranosyl residues (2,3-O-acetyl-Xylp). Considering action on GGM, OsAcXE (CE6) preferentially targeted 2-O-acetyl-mannopyranosyl residues (2-O-acetyl-Manp) whereas AnAcXE (CE1) demonstrated highest activity towards 3-O-acetyl-Manp positions; regiopreference of MtAcE (CE16) on GGM was less clear. GENERAL SIGNIFICANCE The current comparative analysis identifies options to control the position of acetyl group release at initial stages of reaction, and enzyme combinations likely to accelerate deacetylation of major hemicellulose sources.
Collapse
Affiliation(s)
- Galina Mai-Gisondi
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, FI-00076 Espoo, Finland
| | - Hannu Maaheimo
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 Espoo, Finland
| | - Sun-Li Chong
- Department of Food and Environmental Sciences, University of Helsinki, Latokartanonkaari 11, FI-00014 Helsinki, Finland
| | - Sandra Hinz
- DuPont Industrial Biosciences, Nieuwe Kanaal 7-S, 6709 PA, Wageningen, The Netherlands
| | - Maija Tenkanen
- Department of Food and Environmental Sciences, University of Helsinki, Latokartanonkaari 11, FI-00014 Helsinki, Finland
| | - Emma Master
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, FI-00076 Espoo, Finland; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada.
| |
Collapse
|
7
|
Adesioye FA, Makhalanyane TP, Biely P, Cowan DA. Phylogeny, classification and metagenomic bioprospecting of microbial acetyl xylan esterases. Enzyme Microb Technol 2016; 93-94:79-91. [DOI: 10.1016/j.enzmictec.2016.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/18/2016] [Accepted: 07/01/2016] [Indexed: 02/06/2023]
|
8
|
Liu S, Ding S. Replacement of carbohydrate binding modules improves acetyl xylan esterase activity and its synergistic hydrolysis of different substrates with xylanase. BMC Biotechnol 2016; 16:73. [PMID: 27770795 PMCID: PMC5075172 DOI: 10.1186/s12896-016-0305-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/13/2016] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Acetylation of the xylan backbone was a major obstacle to enzymatic decomposition. Removal of acetyl groups by acetyl xylan esterases (AXEs) is essential for completely enzymatic hydrolysis of xylan. Appended carbohydrate binding modules (CBMs) can promote the enzymatic deconstruction of plant cell walls by targeting and proximity effects. Fungal acetyl xylan esterases are strictly appended to cellulose-specific CBM1. It is still unclear whether xylan-specific CBMs have a greater advantage than CBM1 in potentiating the activity of fungal deacetylating enzymes and its synergistic hydrolysis of different substrates with xylanase. RESULTS Three recombinant AXE1s fused with different xylan-specific CBMs, together with wild-type AXE1 with CBM1 and CBM1-deleted mutant AXE1dC, were constructed in this study. The optimal temperature and pH of recombinant AXE1s was 50 °C and 8.0 (except AXE1dC-CBM6), respectively. Cellulose-specific CBM1 in AXE1 obviously contributed to its catalytic action against substrates compared with AXE1dC. However, replacement of CBM1 with xylan-specific CBM4-2 significantly enhanced AXE1 thermostability and catalytic activity against soluble substrate 4-methylumbelliferyl acetate. Whereas replacements with xylan-specific CBM6 and CBM22-2 were more effective in enzymatic release of acetic acid from destarched wheat bran, NaClO2-treated wheat straw, and water-insoluble wheat arabinoxylan compared to AXE1. Moreover, replacement with CBM6 and CBM22-2 also resulted in higher degree releases of reducing sugar and acetic acid from different substrates when simultaneous hydrolysis with xylanase. A good linear relationship exists between the acetic acid and reducing sugar release. CONCLUSIONS Our findings suggested that the replacement with CBM6 and CBM22-2 not only significantly improved the catalysis efficiency of AXE1, but also increased its synergistic hydrolysis of different substrates with xylanase, indicating the significance of targeting effect in AXE1 catalysis mediated by xylan-specific CBMs.
Collapse
Affiliation(s)
- Shiping Liu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Shaojun Ding
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| |
Collapse
|
9
|
Extra carbohydrate binding module contributes to the processivity and catalytic activity of a non-modular hydrolase family 5 endoglucanase from Fomitiporia mediterranea MF3/22. Enzyme Microb Technol 2016; 91:42-51. [DOI: 10.1016/j.enzmictec.2016.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/12/2016] [Accepted: 06/01/2016] [Indexed: 11/23/2022]
|
10
|
The promises and challenges of fusion constructs in protein biochemistry and enzymology. Appl Microbiol Biotechnol 2016; 100:8273-81. [PMID: 27541749 DOI: 10.1007/s00253-016-7795-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 01/05/2023]
Abstract
Fusion constructs are used to improve the properties of or impart novel functionality to proteins for biotechnological applications. The biochemical characteristics of enzymes or functional proteins optimized by fusion include catalytic efficiency, stability, activity, expression, secretion, and solubility. In this review, we summarize the parameters of enzymes or functional proteins that can be modified by fusion constructs. For each parameter, fusion strategies and molecular partners are examined using examples from recent studies. Future prospects in this field are also discussed. This review is expected to increase interest in and advance fusion strategies for optimization of enzymes and other functional proteins.
Collapse
|
11
|
C-Terminal carbohydrate-binding module 9_2 fused to the N-terminus of GH11 xylanase from Aspergillus niger. Biotechnol Lett 2016; 38:1739-45. [DOI: 10.1007/s10529-016-2149-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/06/2016] [Indexed: 10/21/2022]
|
12
|
Zhou SH, Liu Y, Zhao YJ, Chi Z, Chi ZM, Liu GL. Enhanced exo-inulinase activity and stability by fusion of an inulin-binding module. Appl Microbiol Biotechnol 2016; 100:8063-74. [DOI: 10.1007/s00253-016-7587-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/24/2016] [Accepted: 04/28/2016] [Indexed: 01/14/2023]
|