1
|
Shen Y, Wang F, Li Y, Li J, Xiang S, Yang Y, Yang H, Cai R, Tan W. Novel Self-Powered Biosensor Based on Au Nanoparticles @ Pd Nanorings and Catalytic Hairpin Assembly for Ultrasensitive miRNA-21 Assay. Anal Chem 2024; 96:14508-14515. [PMID: 39177401 DOI: 10.1021/acs.analchem.4c02751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
An ultrasensitive self-powered biosensor is constructed for miRNA-21 detection based on Au nanoparticles @ Pd nanorings (Au NPs@Pd NRs) and catalytic hairpin assembly (CHA). The Au NPs@Pd NRs possess excellent electrical conductivity to improve the electron transfer rate and show good elimination of byproduct H2O2 to assist glucose oxidase (GOD) to catalyze glucose; CHA is used as an amplification strategy to effectively enhance the sensitivity of the biosensor. To further amplify the output signal, a capacitor is integrated into the self-powered biosensor. With multiple signal amplification strategies, the self-powered biosensor possesses a linear range of 0.1-10-4 fM and a lower limit of detection (LOD) of 0.032 fM (S/N = 3). In addition, the as-prepared self-powered biosensor displays potential applicability in the assay toward miRNA-21 in human serum samples.
Collapse
Affiliation(s)
- Yan Shen
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Futing Wang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Yujin Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Jingxian Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Shi Xiang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Yan Yang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Hongfen Yang
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Ren Cai
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Kausaite-Minkstimiene A, Kaminskas A, Ramanaviciene A. Development of a membraneless single-enzyme biofuel cell powered by glucose. Biosens Bioelectron 2022; 216:114657. [DOI: 10.1016/j.bios.2022.114657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/02/2022]
|
3
|
Jiang C, Zheng L, Liu Y. Aligned Carbon Nanotube Films for Immobilization of Glucose Oxidase and its Application in Glucose Biosensor. Aust J Chem 2021. [DOI: 10.1071/ch21075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Lv C, Li S, Liu L, Zhu X, Yang X. Enhanced Electrochemical Characteristics of the Glucose Oxidase Bioelectrode Constructed by Carboxyl-Functionalized Mesoporous Carbon. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3365. [PMID: 32545838 PMCID: PMC7349592 DOI: 10.3390/s20123365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/07/2020] [Accepted: 06/11/2020] [Indexed: 01/04/2023]
Abstract
This research revealed the effect of carboxyl-functionalization on the mesoporous carbon (MC)-fixed glucose oxidase (GOx) for promoting the properties of bioelectrodes. It showed that the oxidation time, temperature and concentration, can significantly affect MC carboxylation. The condition of 2 M ammonium persulfate, 50 °C and 24 h was applied in the study for the successful addition of carboxyl groups to MC, analyzed by FTIR. The nitrogen adsorption isotherms, and X-ray diffraction analysis showed that the carboxylation process slightly changed the physical properties of MC and that the specific surface area and pore size were all well-maintained in MC-COOH. Electrochemical characteristics analysis showed that Nafion/GOx/MC-COOH presented better electrocatalytic activity with greater peak current intensity (1.13-fold of oxidation peak current and 4.98-fold of reduction peak current) compared to Nafion/GOx/MC. Anodic charge-transfer coefficients (α) of GOx/MC-COOH increased to 0.77, implying the favored anodic reaction. Furthermore, the GOx immobilization and enzyme activity in MC-COOH increased 140.72% and 252.74%, leading to the enhanced electroactive GOx surface coverage of Nafion/GOx/MC-COOH electrode (22.92% higher, 1.29 × 10-8 mol cm-2) than the control electrode. Results showed that carboxyl functionalization could increase the amount and activity of immobilized GOx, thereby improving the electrode properties.
Collapse
Affiliation(s)
- Chuhan Lv
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (C.L.); (S.L.); (L.L.); (X.Z.)
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| | - Shuangfei Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (C.L.); (S.L.); (L.L.); (X.Z.)
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| | - Liangxu Liu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (C.L.); (S.L.); (L.L.); (X.Z.)
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| | - Xingyu Zhu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (C.L.); (S.L.); (L.L.); (X.Z.)
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| | - Xuewei Yang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (C.L.); (S.L.); (L.L.); (X.Z.)
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
5
|
Gupta MN, Perwez M, Sardar M. Protein crosslinking: Uses in chemistry, biology and biotechnology. BIOCATAL BIOTRANSFOR 2020. [DOI: 10.1080/10242422.2020.1733990] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
| | - Mohammad Perwez
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Meryam Sardar
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
6
|
Increased thermal stability of a glucose oxidase biosensor under high hydrostatic pressure. Enzyme Microb Technol 2020; 134:109486. [DOI: 10.1016/j.enzmictec.2019.109486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/15/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022]
|
7
|
Shitanda I, Kato T, Suzuki R, Aikawa T, Hoshi Y, Itagaki M, Tsujimura S. Stable Immobilization of Enzyme on Pendant Glycidyl Group-Modified Mesoporous Carbon by Graft Polymerization of Poly(glycidyl methacrylate). BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190212] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Isao Shitanda
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Takanao Kato
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Ryo Suzuki
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Tatsuo Aikawa
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yoshinao Hoshi
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Masayuki Itagaki
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Seiya Tsujimura
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Division of Material Science, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-5358, Japan
| |
Collapse
|
8
|
Lo Dico G, Wicklein B, Lisuzzo L, Lazzara G, Aranda P, Ruiz-Hitzky E. Multicomponent bionanocomposites based on clay nanoarchitectures for electrochemical devices. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:1303-1315. [PMID: 31293867 PMCID: PMC6604714 DOI: 10.3762/bjnano.10.129] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/05/2019] [Indexed: 05/20/2023]
Abstract
Based on the unique ability of defibrillated sepiolite (SEP) to form stable and homogeneous colloidal dispersions of diverse types of nanoparticles in aqueous media under ultrasonication, multicomponent conductive nanoarchitectured materials integrating halloysite nanotubes (HNTs), graphene nanoplatelets (GNPs) and chitosan (CHI) have been developed. The resulting nanohybrid suspensions could be easily formed into films or foams, where each individual component plays a critical role in the biocomposite: HNTs act as nanocontainers for bioactive species, GNPs provide electrical conductivity (enhanced by doping with MWCNTs) and, the CHI polymer matrix introduces mechanical and membrane properties that are of key significance for the development of electrochemical devices. The resulting characteristics allow for a possible application of these active elements as integrated multicomponent materials for advanced electrochemical devices such as biosensors and enzymatic biofuel cells. This strategy can be regarded as an "a la carte" menu, where the selection of the nanocomponents exhibiting different properties will determine a functional set of predetermined utility with SEP maintaining stable colloidal dispersions of different nanoparticles and polymers in water.
Collapse
Affiliation(s)
- Giulia Lo Dico
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze pad 17, 90128 Palermo, Italy
| | - Bernd Wicklein
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Lorenzo Lisuzzo
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze pad 17, 90128 Palermo, Italy
| | - Giuseppe Lazzara
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze pad 17, 90128 Palermo, Italy
| | - Pilar Aranda
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Eduardo Ruiz-Hitzky
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| |
Collapse
|
9
|
A simple and flexible enzymatic glucose biosensor using chitosan entrapped mesoporous carbon nanocomposite. Microchem J 2019. [DOI: 10.1016/j.microc.2019.03.083] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Amperometric sandwich immunoassay for determination of myeloperoxidase by using gold nanoparticles encapsulated in graphitized mesoporous carbon. Mikrochim Acta 2019; 186:262. [PMID: 30929076 DOI: 10.1007/s00604-019-3359-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/08/2019] [Indexed: 02/01/2023]
Abstract
An ultrasensitive sandwich-type electrochemical immunosensor was developed for the amperometric determination of serum myeloperoxidase (MPO). The method is making use of (a) gold nanoparticles encapsulated in graphitized mesoporous carbons (AuNP@GMC); and (b) horseradish peroxidase (HRP) labeled secondary antibody (HRP@Ab2) immobilized on AuNP@GMC. MPO capture antibody (Ab1) was immobilized on the electrode modified with an AuNP-graphene oxide nanocomposite. The sandwich immunoreaction leads to the formation of the complex composed of Ab1, MPO, and HRP@Ab2. An amplified electrochemical signal is produced by electrocatalytic reduction of H2O2 (at a typical voltage of -0.18 V vs. Ag/AgCl) in the presence of enzymatically oxidized thionine. The peak current of thionine was measured using differential pulse voltammetry. Under optimized steady-state conditions, the reduction peak increases in the 1 to 300 pg.mL-1 MPO concentration range, and the detection limit is 0.1 pg.mL-1 (at S/N = 3). Graphical abstract Schematic presentation of AuNP-GO based sandwich-type electrochemical immunoassay for the determination of myeloperoxidase by using gold nanoparticles encapsulated in graphitized mesoporous carbons (AuNP@GMC) as a carrier for horseradish peroxidase (HRP) labeled secondary antibody (HRP@Ab2).
Collapse
|
11
|
Garcia-Perez T, Hu S, Wee Y, Scudiero L, Hoffstater C, Kim J, Ha S. Effect of Surface and Bulk Properties of Mesoporous Carbons on the Electrochemical Behavior of GOx-Nanocomposites. Front Chem 2019; 7:84. [PMID: 30838202 PMCID: PMC6389605 DOI: 10.3389/fchem.2019.00084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/31/2019] [Indexed: 11/17/2022] Open
Abstract
Biofuel cell (BFC) electrodes are typically manufactured by combining enzymes that act as catalysts with conductive carbon nanomaterials in a form of enzyme-nanocomposite. However, a little attention has been paid to effects of the carbon nanomaterials' structural properties on the electrochemical performances of the enzyme-nanocomposites. This work aims at studying the effects of surface and bulk properties of carbon nanomaterials with different degrees of graphitization on the electrochemical performances of glucose oxidase (GOx)-nanocomposites produced by immobilizing GOx within a network of carbon nanopaticles. Two types of carbon nanomaterials were used: graphitized mesoporous carbon (GMC) and purified mesoporous carbon (PMC). Graphitization index, surface functional groups, hydrophobic properties, and rate of aggregation were measured for as-received and acid-treated GMC and PMC samples by using Raman spectrometry, X-ray photoelectron spectroscopy (XPS), contact angle measurement, and dynamic light scattering (DLS), respectively. In addition to these physical property characterizations, the enzyme loading and electrochemical performances of the GOx-nanocomposites were studied via elemental analysis and cyclic voltammetry tests, respectively. We also fabricated BFCs using our GOx-nanocomposite materials as the enzyme anodes, and tested their performances by obtaining current-voltage (IV) plots. Our findings suggest that the electrochemical performance of GOx-nanocomposite material is determined by the combined effects of graphitization index, electrical conductivity and surface chemistry of carbon nanomaterials.
Collapse
Affiliation(s)
- Tsai Garcia-Perez
- School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, United States
| | - Shouzhen Hu
- School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, United States
| | - Youngho Wee
- Department of Chemical and Biological Engineering, Korea University, Seoul, South Korea
| | - Louis Scudiero
- Department of Chemistry and Materials Science and Engineering Program, Washington State University, Pullman, WA, United States
| | - Conrad Hoffstater
- School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, United States
| | - Jungbae Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul, South Korea
| | - Su Ha
- School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, United States
| |
Collapse
|
12
|
Guzsvány V, Anojčić J, Vajdle O, Radulović E, Madarász D, Kónya Z, Kalcher K. Amperometric Determination of Glucose in White Grape and in Tablets as Ingredient by Screen-Printed Electrode Modified with Glucose Oxidase and Composite of Platinum and Multiwalled Carbon Nanotubes. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1387-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Wearable biofuel cells based on the classification of enzyme for high power outputs and lifetimes. Biosens Bioelectron 2018; 124-125:40-52. [PMID: 30343155 DOI: 10.1016/j.bios.2018.09.086] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/26/2018] [Accepted: 09/26/2018] [Indexed: 01/06/2023]
Abstract
Wearable enzymatic biofuel cells would be the most prospective fuel cells for wearable devices because of their low cost, compactness and flexibility. As the high specificity and catalytic properties of enzymes, enzymatic biofuel cells (EBFCs) catalyze the fuel associated with the redox reaction and get electrical energy. Available biofuels such as glucose, lactate and pyruvate can be harvested from biofluids of sweat, tears and blood, which afford cells a favorable use in implantable and wearable devices. However, the development of wearable enzymatic biofuel cells requires significant improvements on the power density and enzymes lifetime. In this paper, some new advances in improving the performance of wearable enzymatic biofuel cells are reviewed based on the bioanode and biocathode by classifying single-enzyme and multi-enzyme catalysis system. Thereinto, the bioanode usually contains oxidases and dehydrogenases as catalyst, and the biocathode utilizes the catalysis of multi-copper oxidases (MCOs) in the single system. For further enhancing the power density, efforts to develop multi-enzyme catalysis strategies are discussed in bioanode and biocathode respectively. Moreover, some potential technologies in recent years, such as carbon nanodots, CNT sponges and mixed operational/storage electrode are summarized owing to notable efficiency and the capability of enhancing electron transfer on the electrode. Finally, major challenges and future prospects are discussed for the high power output, stable and practical wearable enzymatic biofuel cells.
Collapse
|
14
|
Cho E, Mohammadifar M, Choi S. A Single-Use, Self-Powered, Paper-Based Sensor Patch for Detection of Exercise-Induced Hypoglycemia. MICROMACHINES 2017; 8:mi8090265. [PMID: 30400457 PMCID: PMC6189796 DOI: 10.3390/mi8090265] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/23/2017] [Accepted: 08/27/2017] [Indexed: 11/21/2022]
Abstract
We report a paper-based self-powered sensor patch for prevention and management of exercise-induced hypoglycemia. The article describes the fabrication, in vitro, and in vivo characterization of the sensor for glucose monitoring in human sweat. This wearable, non-invasive, single-use biosensor integrates a vertically stacked, paper-based glucose/oxygen enzymatic fuel cell into a standard Band-Aid adhesive patch. The paper-based device attaches directly to skin, wicks sweat by using capillary forces to a reservoir where chemical energy is converted to electrical energy, and monitors glucose without external power and sophisticated readout instruments. The device utilizes (1) a 3-D paper-based fuel cell configuration, (2) an electrically conducting microfluidic reservoir for a high anode surface area and efficient mass transfer, and (3) a direct electron transfer between glucose oxidase and anodes for enhanced electron discharge properties. The developed sensor shows a high linearity of current at 0.02–1.0 mg/mL glucose centration (R2 = 0.989) with a high sensitivity of 1.35 µA/mM.
Collapse
Affiliation(s)
- Eunyoung Cho
- Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York-Binghamton, Binghamton, NY 13902, USA.
| | - Maedeh Mohammadifar
- Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York-Binghamton, Binghamton, NY 13902, USA.
| | - Seokheun Choi
- Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York-Binghamton, Binghamton, NY 13902, USA.
| |
Collapse
|
15
|
Jiang K, Zhang X, Huang J, Wang S, Chen J. Porous hollow tubular carbon materials based on zeolitic imidazolate framework-8 derived from ZnO nanorods as new enzyme immobilizing matrix for high-performance bioanode of glucose/O 2 biofuel cells. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.04.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Dubey MK, Zehra A, Aamir M, Meena M, Ahirwal L, Singh S, Shukla S, Upadhyay RS, Bueno-Mari R, Bajpai VK. Improvement Strategies, Cost Effective Production, and Potential Applications of Fungal Glucose Oxidase (GOD): Current Updates. Front Microbiol 2017; 8:1032. [PMID: 28659876 PMCID: PMC5468390 DOI: 10.3389/fmicb.2017.01032] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/23/2017] [Indexed: 01/15/2023] Open
Abstract
Fungal glucose oxidase (GOD) is widely employed in the different sectors of food industries for use in baking products, dry egg powder, beverages, and gluconic acid production. GOD also has several other novel applications in chemical, pharmaceutical, textile, and other biotechnological industries. The electrochemical suitability of GOD catalyzed reactions has enabled its successful use in bioelectronic devices, particularly biofuel cells, and biosensors. Other crucial aspects of GOD such as improved feeding efficiency in response to GOD supplemental diet, roles in antimicrobial activities, and enhancing pathogen defense response, thereby providing induced resistance in plants have also been reported. Moreover, the medical science, another emerging branch where GOD was recently reported to induce several apoptosis characteristics as well as cellular senescence by downregulating Klotho gene expression. These widespread applications of GOD have led to increased demand for more extensive research to improve its production, characterization, and enhanced stability to enable long term usages. Currently, GOD is mainly produced and purified from Aspergillus niger and Penicillium species, but the yield is relatively low and the purification process is troublesome. It is practical to build an excellent GOD-producing strain. Therefore, the present review describes innovative methods of enhancing fungal GOD production by using genetic and non-genetic approaches in-depth along with purification techniques. The review also highlights current research progress in the cost effective production of GOD, including key advances, potential applications and limitations. Therefore, there is an extensive need to commercialize these processes by developing and optimizing novel strategies for cost effective GOD production.
Collapse
Affiliation(s)
- Manish K. Dubey
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu UniversityVaranasi, India
| | - Andleeb Zehra
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu UniversityVaranasi, India
| | - Mohd Aamir
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu UniversityVaranasi, India
| | - Mukesh Meena
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu UniversityVaranasi, India
| | - Laxmi Ahirwal
- Laboratory of Molecular Biology, Department of Botany, Dr. Hari Singh Gour UniversitySagar, India
| | - Siddhartha Singh
- Laboratory of Molecular Biology, Department of Botany, Dr. Hari Singh Gour UniversitySagar, India
| | - Shruti Shukla
- Department of Energy and Materials Engineering, Dongguk UniversitySeoul, South Korea
| | - Ram S. Upadhyay
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu UniversityVaranasi, India
| | - Ruben Bueno-Mari
- Research and Development (R+D) Department, Laboratorios LokímicaValencia, Spain
| | - Vivek K. Bajpai
- Department of Applied Microbiology and Biotechnology, Yeungnam UniversityGyeongsan, South Korea
| |
Collapse
|
17
|
Cui J, Tan Z, Han P, Zhong C, Jia S. Enzyme Shielding in a Large Mesoporous Hollow Silica Shell for Improved Recycling and Stability Based on CaCO 3 Microtemplates and Biomimetic Silicification. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:3883-3890. [PMID: 28452473 DOI: 10.1021/acs.jafc.7b00672] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report a novel "anchor-shield" approach for synthesizing a yolk-shell-structured biocatalytic system that consists of a phenylalanine ammonia lyase (PAL) protein particle core and a hollow silica shell with large mesopores by a combination of CaCO3 microtemplates and biomimetic silicification. The method is established upon filling porous CaCO3 cores with PAL via co-precipitation, controlled self-assembly and polycondensation of silanes, cross-link of the PAL molecules, and subsequent CaCO3 dissolution. During this process, the self-assembled layer of cetyltrimethylammonium bromide served as a structure-directing agent of the mesostructure and directed the overgrowth of the mesostructured silica on the external surface of PAL/CaCO3 hybrid microspheres; after CaCO3 dissolution, the cross-linked PAL particles were encapsulated in the hollow silica shell. The hollow silica shell around the enzyme particles provided a "shield" to protect from biological, thermal, and chemical degradation for the enzyme. As a result, the recycling of the PAL enzyme was improved remarkably in comparison to adsorbed PAL on CaCO3. PAL particles with a hollow silica shell still retained 60% of their original activity after 13 cycles, whereas adsorbed PAL on CaCO3 microparticles lost activity after 7 cycles. Moreover, immobilized PAL exhibited higher stability against a proteolytic agent, denaturants, heat, and extreme pH than adsorbed PAL on CaCO3 microparticles. These results demonstrated that the "anchor-shield" approach is an efficient method to obtain a stable and recycled biocatalyst with a yolk-shell structure.
Collapse
Affiliation(s)
- Jiandong Cui
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology , 29, 13th Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, People's Republic of China
- Research Center for Fermentation Engineering of Hebei, College of Bioscience and Bioengineering, Hebei University of Science and Technology , 26 Yuxiang Street, Shijiazhang, Hebei 050000, People's Republic of China
| | - Zhilei Tan
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology , 29, 13th Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, People's Republic of China
| | - Peipei Han
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology , 29, 13th Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, People's Republic of China
| | - Cheng Zhong
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology , 29, 13th Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, People's Republic of China
| | - Shiru Jia
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology , 29, 13th Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, People's Republic of China
| |
Collapse
|
18
|
Qu F, Ma X, Hui Y, Chen F, Gao Y. Preparation of Close-Packed Silver Nanoparticles on Graphene to Improve the Enzyme Immobilization and Electron Transfer at Electrode in Glucose/O2
Biofuel Cell. CHINESE J CHEM 2017. [DOI: 10.1002/cjoc.201600824] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Fengjin Qu
- Department of Applied Chemistry, School of Natural and Applied Sciences; Northwestern Polytechnical University; Xi'an Shaanxi 710129 China
| | - Xiaoyan Ma
- Department of Applied Chemistry, School of Natural and Applied Sciences; Northwestern Polytechnical University; Xi'an Shaanxi 710129 China
| | - Yuchen Hui
- Department of Applied Chemistry, School of Natural and Applied Sciences; Northwestern Polytechnical University; Xi'an Shaanxi 710129 China
| | - Fang Chen
- Department of Applied Chemistry, School of Natural and Applied Sciences; Northwestern Polytechnical University; Xi'an Shaanxi 710129 China
| | - Yan Gao
- Department of Applied Chemistry, School of Natural and Applied Sciences; Northwestern Polytechnical University; Xi'an Shaanxi 710129 China
| |
Collapse
|