1
|
Plummer SM, Plummer MA, Merkel PA, Waidner LA. Using directed evolution to improve hydrogen production in chimeric hydrogenases from algal species. Enzyme Microb Technol 2024; 173:110349. [PMID: 37984199 DOI: 10.1016/j.enzmictec.2023.110349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023]
Abstract
Algae generate hydrogen from sunlight and water utilizing high-energy electrons generated during photosynthesis. The amount of hydrogen produced in heterologous expression of the wild-type hydrogenase is currently insufficient for industrial applications. One approach to improve hydrogen yields is through directed evolution of the DNA of the native hydrogenase. Here, we created 113 chimeric algal hydrogenase gene variants derived from combining segments of three parent hydrogenases, two from Chlamydomonas reinhardtii (CrHydA1 and CrHydA2) and one from Scenedesmus obliquus (HydA1). To generate chimeras, there were seven segments into which each of the parent hydrogenase genes was divided and recombined in a variety of combinations. The chimeric and parental hydrogenase sequences were cloned for heterologous expression in Escherichia coli, and 40 of the resultant enzymes expressed were assayed for H2 production. Chimeric clones that resulted in equal or greater production obtained with the cloned CrHydA1 parent hydrogenase were those comprised of CrHydA1 sequence in segments #1, 2, 3, and/or 4. These best-performing chimeras all contained one common region, segment #2, the part of the sequence known to contain important amino acids involved in proton transfer or hydrogen cluster coordination. The amino acid sequence distances among all chimeric clones to that of the CrHydA1 parent were determined, and the relationship between sequence distances and experimentally-derived H2 production was evaluated. An additional model determined the correlation between electrostatic potential energy surface area ratios and H2 production. The model yielded several algal mutants with predicted hydrogen productions in a range of two to three times that of the wild-type hydrogenase. The mutant data and the model can now be used to predict which specific mutant sequences may result in even higher hydrogen yields. Overall, results provide more precise details in planning future directed evolution to functionally improve algal hydrogenases.
Collapse
Affiliation(s)
| | | | - Patricia A Merkel
- H2OPE Biofuels LLC, Greenwood Village, CO, USA; Children's Hospital, 3123 East 16th Avenue, B518, Aurora, CO, USA
| | - Lisa A Waidner
- H2OPE Biofuels LLC, Greenwood Village, CO, USA; University of West Florida, Pensacola, FL USA.
| |
Collapse
|
2
|
Campbell IJ, Kahanda D, Atkinson JT, Sparks ON, Kim J, Tseng CP, Verduzco R, Bennett GN, Silberg JJ. Recombination of 2Fe-2S Ferredoxins Reveals Differences in the Inheritance of Thermostability and Midpoint Potential. ACS Synth Biol 2020; 9:3245-3253. [PMID: 33226772 DOI: 10.1021/acssynbio.0c00303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recombination can be used in the laboratory to overcome component limitations in synthetic biology by creating enzymes that exhibit distinct activities and stabilities from native proteins. To investigate how recombination affects the properties of an oxidoreductase that transfers electrons in cells, we created ferredoxin (Fd) chimeras by recombining distantly related cyanobacterial and cyanomyophage Fds (53% identity) that present similar midpoint potentials but distinct thermostabilities. Fd chimeras having a wide range of amino acid substitutions retained the ability to coordinate an iron-sulfur cluster, although their thermostabilities varied with the fraction of residues inherited from each parent. The midpoint potentials of chimeric Fds also varied. However, all of the synthetic Fds exhibited midpoint potentials outside of the parental protein range. Each of the chimeric Fds could also support electron transfer between Fd-NADP reductase and sulfite reductase in Escherichia coli, although the chimeric Fds varied in the expression required for similar levels of cellular electron transfer. These results show how Fds can be diversified through recombination and reveal differences in the inheritance of thermostability and electrochemical properties. Furthermore, they illustrate how electron transfer efficiencies of chimeric Fds can be rapidly evaluated using a synthetic metabolic pathway.
Collapse
Affiliation(s)
- Ian J. Campbell
- Department of BioSciences, Rice University, 6100 Main Street, MS-140, Houston, Texas 77005, United States
| | - Dimithree Kahanda
- Department of BioSciences, Rice University, 6100 Main Street, MS-140, Houston, Texas 77005, United States
| | - Joshua T. Atkinson
- Department of BioSciences, Rice University, 6100 Main Street, MS-140, Houston, Texas 77005, United States
| | - Othneil Noble Sparks
- Department of BioSciences, Rice University, 6100 Main Street, MS-140, Houston, Texas 77005, United States
| | - Jinyoung Kim
- Department of BioSciences, Rice University, 6100 Main Street, MS-140, Houston, Texas 77005, United States
| | - Chia-Ping Tseng
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, MS-362, Houston, Texas 77005, United States
| | - Rafael Verduzco
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, MS-362, Houston, Texas 77005, United States
| | - George N. Bennett
- Department of BioSciences, Rice University, 6100 Main Street, MS-140, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, MS-362, Houston, Texas 77005, United States
| | - Jonathan J. Silberg
- Department of BioSciences, Rice University, 6100 Main Street, MS-140, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, MS-362, Houston, Texas 77005, United States
- Department of Bioengineering, Rice University, 6100 Main Street, MS-142, Houston, Texas 77005, United States
| |
Collapse
|
3
|
Clostridial whole cell and enzyme systems for hydrogen production: current state and perspectives. Appl Microbiol Biotechnol 2018; 103:567-575. [PMID: 30446778 DOI: 10.1007/s00253-018-9514-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
Abstract
Strictly anaerobic bacteria of the Clostridium genus have attracted great interest as potential cell factories for molecular hydrogen production purposes. In addition to being a useful approach to this process, dark fermentation has the advantage of using the degradation of cheap agricultural residues and industrial wastes for molecular hydrogen production. However, many improvements are still required before large-scale hydrogen production from clostridial metabolism is possible. Here we review the literature on the basic biological processes involved in clostridial hydrogen production, and present the main advances obtained so far in order to enhance the hydrogen productivity, as well as suggesting some possible future prospects.
Collapse
|