1
|
Aly A, Scott G, Calderon M, Haghighi AP. N6-Adenosine Methylation of SARS-CoV-2 5'-UTR Regulates Translation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.10.17.512569. [PMID: 36299421 PMCID: PMC9603819 DOI: 10.1101/2022.10.17.512569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The coronavirus disease 2019 (COVID19) continues to spread despite global vaccination efforts (1). This, alongside the rapid emergence of vaccine resistant variants, creates a need for orthogonal therapeutic strategies targeting more conserved facets of severe acute respiratory syndrome coronavirus (SARS-CoV-2) (2-4). One conserved feature of all coronaviruses is their ability to undergo discontinuous transcription wherein individual open reading frames fuse with the 5'-UTR leader sequence during negative-strand RNA synthesis (5). As such all viral protein coding genes use the same 5'-UTR for translation (6). Using in vitro reporter assays, we demonstrate that the SARS-CoV-2 5'-UTR efficiently initiates protein translation despite its predicted structural complexity. Through a combination of bioinformatic and biochemical assays, we demonstrate that a single METTL3-dependent m6A methylation event in SARS-CoV-2 5'-UTR regulates the rate of translation initiation. We show that m6A likely exerts this effect by destabilizing secondary structure in the 5'-UTR, thereby facilitating access to the ribosomal pre-initiation complex. This discovery opens new avenues for novel therapeutic strategies aimed at controlling the ability of SARS-CoV-2 to replicate in host cells.
Collapse
|
2
|
Dyudeeva ES, Pyshnaya IA. Phosphoryl guanidine oligonucleotides as primers for RNA-dependent DNA synthesis using murine leukemia virus reverse transcriptase. Vavilovskii Zhurnal Genet Selektsii 2022; 26:5-13. [PMID: 35342851 PMCID: PMC8892174 DOI: 10.18699/vjgb-22-02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 11/29/2022] Open
Abstract
Modern approaches to the detection and analysis of low-copy-number RNAs are often based on the use of RNA-dependent DNA polymerases, for example, in reverse-transcription PCR. The accuracy and eff iciency of cDNA synthesis in the reverse-transcription reaction catalyzed by reverse transcriptase (RNA-dependent DNA polymerase) signif icantly affect the correctness of the results of PCR diagnostic assays and/or RNA sequencing. In this regard, many studies are focused on the optimization of the reverse-transcription reaction, including the search for more perfect primers necessary to obtain a full-length DNA copy of RNA under study. The best-known completely uncharged analogs of oligonucleotides – morpholine oligonucleotides and peptide nucleic acids – cannot be substrates for enzymes that process nucleic acids. The aim of this work was to conduct a pilot study of uncharged phosphoryl guanidine oligodeoxyribonucleotides (PGOs) as primers for mouse leukemia virus reverse transcriptase (MMLV H-). Specif ic features of elongation of partially and completely uncharged PGO primers were investigated. It was demonstrated that PGOs can be elongated eff iciently, e. g., in the presence of a fragment of human ribosomal RNA having complex spatial structure. It was shown that the proportion (%) of abortive elongation products of a PGO primer depends on buffer ionic strength, nucleotide sequence of the primer, and the presence and location of phosphoryl guanidine groups in the primer. The results indicate the
suitability of PGOs, including completely electroneutral ones, as primers for reverse-transcription PCR, thereby
opening up new prospects for the creation of experimental models for the analysis of highly structured RNA.
Collapse
Affiliation(s)
- E. S. Dyudeeva
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences
| | - I. A. Pyshnaya
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences
| |
Collapse
|
3
|
Optimization of reaction condition of recombinase polymerase amplification to detect SARS-CoV-2 DNA and RNA using a statistical method. Biochem Biophys Res Commun 2021; 567:195-200. [PMID: 34166918 PMCID: PMC8189764 DOI: 10.1016/j.bbrc.2021.06.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/07/2021] [Indexed: 12/31/2022]
Abstract
Recombinase polymerase amplification (RPA) is an isothermal reaction that amplifies a target DNA sequence with a recombinase, a single-stranded DNA-binding protein (SSB), and a strand-displacing DNA polymerase. In this study, we optimized the reaction conditions of RPA to detect SARS-CoV-2 DNA and RNA using a statistical method to enhance the sensitivity. In vitro synthesized SARS-CoV-2 DNA and RNA were used as targets. After evaluating the concentration of each component, the uvsY, gp32, and ATP concentrations appeared to be rate-determining factors. In particular, the balance between the binding and dissociation of uvsX and DNA primer was precisely adjusted. Under the optimized condition, 60 copies of the target DNA were specifically detected. Detection of 60 copies of RNA was also achieved. Our results prove the fabrication flexibility of RPA reagents, leading to an expansion of the use of RPA in various fields.
Collapse
|
4
|
Yasui R, Sekine K, Yamaguchi K, Furukawa Y, Taniguchi H. Robust parameter design of human induced pluripotent stem cell differentiation protocols defines lineage-specific induction of anterior-posterior gut tube endodermal cells. Stem Cells 2021; 39:429-442. [PMID: 33400835 DOI: 10.1002/stem.3326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/07/2020] [Indexed: 12/29/2022]
Abstract
Tissues and cells derived from pluripotent stem cells (PSC) are likely to become widely used in disease modeling, drug screening, and regenerative medicine. For these applications, the in vitro PSC differentiation process must be elaborately investigated and controlled to reliably obtain the desired end products. However, because traditional experimental methods, such as one factor at a time or brute-force approaches, are impractical for detailed screening of complex PSC cultivation conditions, more strategic and effective screening based on statistical design of experiments (DOE) ought to be indispensable. Among various DOE approaches, we regard robust parameter design (RPD) as particularly suited for differentiation protocol optimization due to its suitability for multifactorial screening. We confirmed the adaptability of RPD for investigating human induced PSC lineage specification toward anterior-posterior gut tube endodermal cells and clarified both the contribution of each cell signaling pathway and the effect of cell signaling condition alteration on marker RNA expression levels, while increasing the efficiency of the screening in 243-fold (18 vs 4374) compared with that of a brute-force approach. Specific induction of anterior foregut, hepatic, pancreatic, or mid-hindgut cells was achieved using seven iPSC strains with the optimal culture protocols established on the basis of RPD analysis. RPD has the potential to enable efficient construction and optimization of PSC differentiation protocols, and its use is recommended from fundamental research to mass production of PSC-derived products.
Collapse
Affiliation(s)
- Ryota Yasui
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.,Fundamental Research Laboratory, Eiken Chemical Co., Ltd., Nogi, Tochigi, Japan
| | - Keisuke Sekine
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.,Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Laboratory of Cancer Cell Systems, National Cancer Center Research Institute, Tokyo, Japan
| | - Kiyoshi Yamaguchi
- Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hideki Taniguchi
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.,Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Advanced Medical Research Center, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| |
Collapse
|
5
|
Kojima K, Juma KM, Akagi S, Hayashi K, Takita T, O'Sullivan CK, Fujiwara S, Nakura Y, Yanagihara I, Yasukawa K. Solvent engineering studies on recombinase polymerase amplification. J Biosci Bioeng 2020; 131:219-224. [PMID: 33177003 DOI: 10.1016/j.jbiosc.2020.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/27/2020] [Accepted: 10/01/2020] [Indexed: 11/24/2022]
Abstract
Recombinase polymerase amplification (RPA) is a technique that is used to specifically amplify a target nucleic acid sequence. Unlike the polymerase chain reaction (PCR), RPA is performed at a constant temperature between 37 and 42°C. Therefore, it can be potentially used for the onsite detection of various pathogens when combined with DNA extraction and amplicon detection techniques. In this study, we prepared recombinant recombinase and single-stranded DNA-binding protein from T4 phage and used them to examine the effects of reaction conditions and additives on the efficiency of RPA. The results revealed that the optimal pH was 7.5-8.0, optimal potassium acetate concentration was 40-80 mM, and optimal reaction temperature was 37-45°C although dimethyl sulfoxide at 5% v/v and formamide at 5% v/v inhibited the reaction. Our results suggest that RPA could be conducted using a wider range of optimal reaction conditions than those required for PCR and that RPA is highly suitable for point-of-care use.
Collapse
Affiliation(s)
- Kenji Kojima
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Kevin Maafu Juma
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Shihomi Akagi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Kaichi Hayashi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Teisuke Takita
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Ciara K O'Sullivan
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Shinsuke Fujiwara
- Department of Bioscience, School of Science and Technology, Kwansei-Gakuin University, Hyogo 669-1337, Japan
| | - Yukiko Nakura
- Department of Developmental Medicine, Research Institute, Osaka Women's and Children's Hospital, Osaka 594-1101, Japan
| | - Itaru Yanagihara
- Department of Developmental Medicine, Research Institute, Osaka Women's and Children's Hospital, Osaka 594-1101, Japan
| | - Kiyoshi Yasukawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
6
|
Yasukawa K, Yanagihara I, Fujiwara S. Alteration of enzymes and their application to nucleic acid amplification (Review). Int J Mol Med 2020; 46:1633-1643. [PMID: 33000189 PMCID: PMC7521554 DOI: 10.3892/ijmm.2020.4726] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 05/29/2020] [Indexed: 12/17/2022] Open
Abstract
Since the discovery of polymerase chain reaction (PCR) in 1985, several methods have been developed to achieve nucleic acid amplification, and are currently used in various fields including clinical diagnosis and life science research. Thus, a wealth of information has accumulated regarding nucleic acid-related enzymes. In this review, some nucleic acid-related enzymes were selected and the recent advances in their modification along with their application to nucleic acid amplification were described. The discussion also focused on optimization of the corresponding reaction conditions. Using newly developed enzymes under well-optimized reaction conditions, the sensitivity, specificity, and fidelity of nucleic acid tests can be improved successfully.
Collapse
Affiliation(s)
- Kiyoshi Yasukawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606‑8502, Japan
| | - Itaru Yanagihara
- Department of Developmental Medicine, Research Institute, Osaka Women's and Children's Hospital, Izumi, Osaka 594‑1101, Japan
| | - Shinsuke Fujiwara
- Department of Bioscience, School of Science and Technology, Kwansei‑Gakuin University, Sanda, Hyogo 669‑1337, Japan
| |
Collapse
|
7
|
An overview of 25 years of research on Thermococcus kodakarensis, a genetically versatile model organism for archaeal research. Folia Microbiol (Praha) 2019; 65:67-78. [PMID: 31286382 DOI: 10.1007/s12223-019-00730-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 06/17/2019] [Indexed: 10/26/2022]
Abstract
Almost 25 years have passed since the discovery of a planktonic, heterotrophic, hyperthermophilic archaeon named Thermococcus kodakarensis KOD1, previously known as Pyrococcus sp. KOD1, by Imanaka and coworkers. T. kodakarensis is one of the most studied archaeon in terms of metabolic pathways, available genomic resources, established genetic engineering techniques, reporter constructs, in vitro transcription/translation machinery, and gene expression/gene knockout systems. In addition to all these, ease of growth using various carbon sources makes it a facile archaeal model organism. Here, in this review, an attempt is made to reflect what we have learnt from this hyperthermophilic archaeon.
Collapse
|
8
|
Okano H, Baba M, Kawato K, Hidese R, Yanagihara I, Kojima K, Takita T, Fujiwara S, Yasukawa K. High sensitive RNA detection by one-step RT-PCR using the genetically engineered variant of DNA polymerase with reverse transcriptase activity from hyperthermophilies. J Biosci Bioeng 2018; 125:275-281. [PMID: 29100684 DOI: 10.1016/j.jbiosc.2017.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/03/2017] [Accepted: 10/07/2017] [Indexed: 01/14/2023]
Abstract
One-step RT-PCR has not been widely used even though some thermostable DNA polymerases with reverse transcriptase (RT) activity were developed from bacterial and archaeal polymerases, which is owing to low cDNA synthesis activity from RNA. In the present study, we developed highly-sensitive one-step RT-PCR using the single variant of family A DNA polymerase with RT activity, K4polL329A (L329A), from the hyperthermophilic bacterium Thermotoga petrophila K4 or the 16-tuple variant of family B DNA polymerase with RT activity, RTX, from the hyperthermophilic archaeon Thermococcus kodakarensis. Optimization of reaction condition revealed that the activities for cDNA synthesis and PCR of K4polL329A and RTX were highly affected by the concentrations of MgCl2 and Mn(OCOCH3)2 as well as those of K4polL329A or RTX. Under the optimized condition, 300 copies/μl of target RNA in 10 μl reaction volumes were successfully detected by the one-step RT-PCR with K4polL329A or RTX, which was almost equally sensitive enough compared with the current RT-PCR condition using retroviral RT and thermostable DNA polymerase. Considering that K4polL329A and RTX are stable even at 90-100°C, our results suggest that the one-step RT-PCR with K4polL329A or RTX is more advantageous than the current one.
Collapse
Affiliation(s)
- Hiroyuki Okano
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Sakyo-ku, Kyoto 606-8502, Japan
| | - Misato Baba
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Sakyo-ku, Kyoto 606-8502, Japan
| | - Katsuhiro Kawato
- Department of Bioscience, School of Science and Technology, Kwansei-Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Ryota Hidese
- Department of Bioscience, School of Science and Technology, Kwansei-Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Itaru Yanagihara
- Department of Developmental Medicine, Research Institute, Osaka Women's and Children's Hospital, 840 Murodo-cho, Izumi 594-1101, Osaka, Japan
| | - Kenji Kojima
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Sakyo-ku, Kyoto 606-8502, Japan
| | - Teisuke Takita
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Sakyo-ku, Kyoto 606-8502, Japan
| | - Shinsuke Fujiwara
- Department of Bioscience, School of Science and Technology, Kwansei-Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Kiyoshi Yasukawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
9
|
Accurate fidelity analysis of the reverse transcriptase by a modified next-generation sequencing. Enzyme Microb Technol 2018; 115:81-85. [DOI: 10.1016/j.enzmictec.2018.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 02/07/2023]
|
10
|
Yasukawa K, Iida K, Okano H, Hidese R, Baba M, Yanagihara I, Kojima K, Takita T, Fujiwara S. Next-generation sequencing-based analysis of reverse transcriptase fidelity. Biochem Biophys Res Commun 2017; 492:147-153. [PMID: 28778390 DOI: 10.1016/j.bbrc.2017.07.169] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 07/31/2017] [Indexed: 01/22/2023]
Abstract
In this study, we devised a simple and rapid method to analyze fidelity of reverse transcriptase (RT) using next-generation sequencing (NGS). The method comprises a cDNA synthesis reaction from standard RNA with a primer containing a tag of 14 randomized bases and the RT to be tested, PCR using high-fidelity DNA polymerase, and NGS. By comparing the sequence of each read with the reference sequence, mutations were identified. The mutation can be identified to be due to an error introduced by either cDNA synthesis, PCR, or NGS based on whether the sequence reads with the same tag contain the same mutation or not. The error rates in cDNA synthesis with Moloney murine leukemia virus (MMLV) RT thermostable variant MM4 or the recently developed 16-tuple variant of family B DNA polymerase with RT activity, RTX, from Thermococcus kodakarensis, were 0.75-1.0 × 10-4 errors/base, while that in the reaction with the wild-type human immunodeficiency virus type 1 (HIV-1) RT was 2.6 × 10-4 errors/base. Overall, our method could precisely evaluate the fidelity of various RTs with different reaction conditions in a high-throughput manner without the use of expensive optics and troublesome adaptor ligation.
Collapse
Affiliation(s)
- Kiyoshi Yasukawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Kei Iida
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Okano
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Ryota Hidese
- Department of Bioscience, School of Science and Technology, Kwansei-Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Misato Baba
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Itaru Yanagihara
- Department of Developmental Medicine, Research Institute, Osaka Women's and Children's Hospital, Osaka 594-1101, Japan
| | - Kenji Kojima
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Teisuke Takita
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shinsuke Fujiwara
- Department of Bioscience, School of Science and Technology, Kwansei-Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
11
|
Okano H, Baba M, Yamasaki T, Hidese R, Fujiwara S, Yanagihara I, Ujiiye T, Hayashi T, Kojima K, Takita T, Yasukawa K. High sensitive one-step RT-PCR using MMLV reverse transcriptase, DNA polymerase with reverse transcriptase activity, and DNA/RNA helicase. Biochem Biophys Res Commun 2017; 487:128-133. [DOI: 10.1016/j.bbrc.2017.04.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 04/07/2017] [Indexed: 02/01/2023]
|