1
|
Huang Y, Liu B, Li J, Chi Y, Zhai H, Liu L, Chi Y, Wang R, Yu H, Yuan T, Ji M. Laccase-loaded CaCO 3 sustained-release microspheres modified SBES anode for enhance performance in the remediation of soil contaminated with phenanthrene and pyrene. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136106. [PMID: 39471620 DOI: 10.1016/j.jhazmat.2024.136106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 11/01/2024]
Abstract
This study aimed to enhance the efficiency of SBES in remediating polycyclic aromatic hydrocarbon (PAH)-contaminated soils by modifying the anode with laccase. The experiment involved four SBES anodes: a carbon nanotube-modified anode (CNT), a free laccase-modified anode (Lac), a gelatin-encapsulated laccase-modified anode (Lac-Gel), and a CaCO3 sustained-release microsphere-loaded laccase-modified (CaCO3-SMs@Laccase) anode (Lac-SMs). The CaCO3-SMs@Laccase notably extended the active period of laccase, with laccase activity in the Lac-SMs measured at 1.646 U/g after 16 days, which was significantly higher than the 0.813 U/g observed in the Lac-Gel group and the 0.206 U/g in the Lac group. The superior electricity generation and degradation efficiency observed in the Lac-SMs group were due to the sustained enzymatic activity provided by the CaCO3-SMs@Laccase. The prevention of anode acidification through CaCO3 decomposition, and promote the forward progress of electrochemical reactions. The phenanthrene (Phe) and pyrene (Pyr) removal efficiency in the soil of the Lac-SMs reached 90.78 % and 84.72 %, surpassing those of the Lac-Gel (80.36 % and 79.14 %), Lac (79.38 % and 69.31 %), and CNT (63.22 % and 56.98 %). The degradation pathway from Pyr to Phe was possible started with hydroxylation. In addition, the laccase also transformed the predominant microbial communities and metabolism pathways.
Collapse
Affiliation(s)
- Yinghao Huang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Boyue Liu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China.
| | - Jie Li
- College of Light Industry Science and Engineering,Tianjin University of science and Technology, Tianjin 300457, China
| | - Yongzhi Chi
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Hongyan Zhai
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Lingjie Liu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Yiyang Chi
- International School of Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Ruiyao Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Haobo Yu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Tengfei Yuan
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
2
|
Babbar N, Sharma G, Arya SK. Effective degradation of chicken feather waste by keratinase enzyme with triton X-100 additive. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Kausaite-Minkstimiene A, Kaminskas A, Ramanaviciene A. Development of a membraneless single-enzyme biofuel cell powered by glucose. Biosens Bioelectron 2022; 216:114657. [DOI: 10.1016/j.bios.2022.114657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/02/2022]
|
4
|
ZnS Quantum Dots Decorated on One-Dimensional Scaffold of MWCNT/PANI Conducting Nanocomposite as an Anode for Enzymatic Biofuel Cell. Polymers (Basel) 2022; 14:polym14071321. [PMID: 35406194 PMCID: PMC9040719 DOI: 10.3390/polym14071321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 01/10/2023] Open
Abstract
This study aims to design a new nanocomposite as a supporting material for wiring the enzyme to develop a bioanode in the enzymatic biofuel cell (EBFC). In this work, polyaniline-based nanocomposite was synthesized by in situ polymerization of aniline monomer. The zeta potential study of the nanofillers was carried out, which reveals the interaction between the nanofillers. The synthesized nanocomposite (MWCNT/ZnS/AgNWs/PANI) was characterized by analytical techniques, such as Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction spectroscopy (XRD). Furthermore, the surface morphology and the in-depth information of the synthesized nanocomposite were displayed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), respectively. In addition, the as-synthesized nanocomposite and the designed bioanode underwent the electrochemical assessment using different electrochemical techniques such as cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and linear sweep voltammetry (LSV) for evaluating the electrochemical behavior of the fabricated anodes. The electrochemically regulated bioanode (MWCNT/ZnS/AgNWs/PANI/Frt/GOx) obtained an open-circuit voltage of 0.55 V and produced a maximal current density of 7.6 mA cm−2 at a glucose concentration of 50 mM prepared in phosphate buffer solution (PBS) (pH 7.0) as a supporting electrolyte at a scan rate of 100 mV s−1.
Collapse
|
5
|
Li N, Sakamoto H, Takamura E, Zheng H, Suye SI. A high performance nanocomposite based bioanode for biofuel cell and biosensor application. Anal Biochem 2021; 631:114363. [PMID: 34478705 DOI: 10.1016/j.ab.2021.114363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/17/2021] [Accepted: 08/30/2021] [Indexed: 11/29/2022]
Abstract
Herein, to improve the current density and sensitivity for biofuel cell and glucose sensing application, a bioanode based on redox polymer (PEI-Fc) binding polydopamine (PDA) coated MWCNTs (PEI-Fc/PDA/MWCNTs) nanocomposite and glucose oxidase (GOD) was fabricated. PDA/MWCNTs nanocomposite was prepared by spontaneous self-polymerization of dopamine on MWCNTs surface and the PEI-Fc/PDA/MWCNTs nanocomposite was prepared by a simple self-assembly method. The PEI-Fc/PDA/MWCNTs nanocomposite and the resulting bioanode were fully characterized. A maximum current density of 0.73 mA cm-2 at the resulting bioanode was obtained by linear sweep voltammetry (LSV) at the scan rate of 50 mV s-1 with 20 mM glucose concentration. Moreover, a linear range up to 4 mM, a high sensitivity of 57.2 μA mM-1 cm-2, a fast response time reaching 95% of the steady current (2 s) and a low limit of detection (0.024 mM) were achieved. The amperometric method demonstrated both the sensitivity and the stability of the bioanode for glucose-sensing was improved by the employed PDA layer. Finally, the biosensor was used for glucose detection in human serum samples showing good recoveries. This study proposed an excellent functional material prepared by a facile self-assembled method for applying in biofuel cells and second-generation biosensors.
Collapse
Affiliation(s)
- Ning Li
- Department of Advanced Interdisciplinary Science and Technology, Graduate School of Engineering, University of Fukui, 3-9-1, Bunkyo, Fukui, 910-8507, Japan.
| | - Hiroaki Sakamoto
- Department of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui, 3-9-1, Bunkyo, Fukui, 910-8507, Japan.
| | - Eiichiro Takamura
- Department of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui, 3-9-1, Bunkyo, Fukui, 910-8507, Japan.
| | - Haitao Zheng
- School of Chemistry and Chemical Engineering, Tiangong University, No. 399 BinShuiXi Road, XiQing District, Tianjin, 300387, PR China.
| | - Shin-Ichiro Suye
- Department of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui, 3-9-1, Bunkyo, Fukui, 910-8507, Japan.
| |
Collapse
|
6
|
Zhang T, Zhang Q, Wang Y, Li F, Xu L. Constructing high-performance H 3PW 12O 40/CoS 2 counter electrodes for quantum dot sensitized solar cells by reducing the surface work function of CoS 2. Dalton Trans 2021; 50:12879-12887. [PMID: 34581370 DOI: 10.1039/d1dt01871j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A low cost H3PW12O40 (PW12)/CoS2 complex is prepared and used as a counter electrode (CE) to combine with sandwich quantum dot sensitized solar cells (QDSSCs) composed of a TiO2/CdS/CdSe/ZnS photoanode and polysulfide electrolyte to study their photovoltaic properties via a simple hydrothermal method. Under standard simulated sunlight, the photoelectric conversion efficiency (PCE) of 2%PW12 (PW12-2/CoS2) doped CEs was 6.29%, which was significantly 67.7% higher than those of QDSSCs based on undoped CoS2 CEs (3.75%). Due to the introduction of PW12, the nanoparticles forming the hollow structure of CoS2 changed from regular octahedra to rough nanoparticles, which increase the active sites. At the same time, the work function of CoS2 decorated with PW12 is decreased. This study and discovery demonstrate that POMs can be used to optimize CE materials and improve the photoelectric conversion efficiency of QDSSCs, which provide an experimental and theoretical basis for subsequent investigations.
Collapse
Affiliation(s)
- Tingting Zhang
- Key Laboratory of Polyoxometalates Science of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Qiu Zhang
- Key Laboratory of Polyoxometalates Science of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Yumeng Wang
- Key Laboratory of Polyoxometalates Science of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Fengyan Li
- Key Laboratory of Polyoxometalates Science of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Lin Xu
- Key Laboratory of Polyoxometalates Science of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| |
Collapse
|
7
|
Mini-Review: Recent Technologies of Electrode and System in the Enzymatic Biofuel Cell (EBFC). APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11115197] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Enzymatic biofuel cells (EBFCs) is one of the branches of fuel cells that can provide high potential for various applications. However, EBFC has challenges in improving the performance power output. Exploring electrode materials is one way to increase enzyme utilization and lead to a high conversion rate so that efficient enzyme loading on the electrode surface can function correctly. This paper briefly presents recent technologies developed to improve bio-catalytic properties, biocompatibility, biodegradability, implantability, and mechanical flexibility in EBFCs. Among the combinations of materials that can be studied and are interesting because of their properties, there are various nanoparticles, carbon-based materials, and conductive polymers; all three have the advantages of chemical stability and enhanced electron transfer. The methods to immobilize enzymes, and support and substrate issues are also covered in this paper. In addition, the EBFC system is also explored and developed as suitable for applications such as self-pumping and microfluidic EBFC.
Collapse
|
8
|
Goel V, Cox D, Barnett SA, Thornton K. Simulation of the Electrochemical Impedance in a Three-Dimensional, Complex Microstructure of Solid Oxide Fuel Cell Cathode and Its Application in the Microstructure Characterization. Front Chem 2021; 9:627699. [PMID: 34123999 PMCID: PMC8190658 DOI: 10.3389/fchem.2021.627699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/26/2021] [Indexed: 11/18/2022] Open
Abstract
Electrochemical impedance spectroscopy (EIS) is a powerful technique for material characterization and diagnosis of the solid oxide fuel cells (SOFC) as it enables separation of different phenomena such as bulk diffusion and surface reaction that occur simultaneously in the SOFC. In this work, we simulate the electrochemical impedance in an experimentally determined, three-dimensional (3D) microstructure of a mixed ion-electron conducting (MIEC) SOFC cathode. We determine the impedance response by solving the mass conservation equation in the cathode under the conditions of an AC load across the cathode’s thickness and surface reaction at the pore/solid interface. Our simulation results reveal a need for modifying the Adler-Lane-Steele model, which is widely used for fitting the impedance behavior of a MIEC cathode, to account for the difference in the oscillation amplitudes of the oxygen vacancy concentration at the pore/solid interface and within the solid bulk. Moreover, our results demonstrate that the effective tortuosity is dependent on the frequency of the applied AC load as well as the material properties, and thus the prevalent practice of treating tortuosity as a constant for a given cathode should be revised. Finally, we propose a method of determining the aforementioned dependence of tortuosity on material properties and frequency by using the EIS data.
Collapse
Affiliation(s)
- Vishwas Goel
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Dalton Cox
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, United States
| | - Scott A Barnett
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, United States
| | - Katsuyo Thornton
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
9
|
Kwon K, Lee KH, Um DH, Jin SA, Park HS, Cho J, Hyun J, Ham HC, Pak C. Elucidation of durability of carbon-supported PdIr alloy catalyst by experimental and theoretical approaches in polymer electrolyte membrane fuel cell. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
|
11
|
Optimization of rGO-PEI/Naph-SH/AgNWs/Frt/GOx nanocomposite anode for biofuel cell applications. Sci Rep 2020; 10:8919. [PMID: 32488131 PMCID: PMC7265384 DOI: 10.1038/s41598-020-65712-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022] Open
Abstract
The present study reports a new nanocomposite design using surface modified silver nanowires decorated on the surface of polyethyleneimine (PEI), a cationic polymer acting as glue for anchoring nanowires and reduced graphene oxide (rGO). The synthesized nanocomposite was employed as a promising electrode material for immobilization of biomolecules and effective transportation of electron, in enzymatic biofuel cell (EBFCs) application. The synthesized nanocomposite was confirmed by analytical techniques, for instance, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM). The electrochemical behaviour of the nanobioelectrocatalysts rGO-PEI/Frt/GOx, rGO-PEI/AgNWs/Frt/GOx, and rGO-PEI/Naph-SH/AgNWs/Frt/GOx was determined by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and linear sweep voltammetry (LSV). The maximum current density obtained by the modified bioanode was found to be 19.9 mA cm−2 at the limiting glucose concentration of 50 mM in PBS (pH 7.0) as supporting electrolyte at a scan rate of 100 mVs−1.
Collapse
|
12
|
Inamuddin, Shakeel N, Imran Ahamed M, Kanchi S, Abbas Kashmery H. Green synthesis of ZnO nanoparticles decorated on polyindole functionalized-MCNTs and used as anode material for enzymatic biofuel cell applications. Sci Rep 2020; 10:5052. [PMID: 32193477 PMCID: PMC7081323 DOI: 10.1038/s41598-020-61831-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/03/2020] [Indexed: 11/08/2022] Open
Abstract
Presently, one of the most important aspects for the development of enzymatic biofuel cells (EBFCs) is to synthesize the novel electrode materials that possess high current density, low open-circuit voltage (OCV) and long-term stability. To achieve the above attributes, lots of new strategies are being used by the researchers for the development of advanced materials. Nowadays, nanomaterials and nanocomposites are the promising material that has been utilized as effective electrode material in solar cells, supercapacitors and biofuel cells application. Herein, we account for a novel electrocatalyst as electrode material that comprised ZnO nanoparticles decorated on the surface of polyindole (PIn)-multi-walled carbon nanotube (MWCNT), for the immobilization of glucose oxidase (GOx) enzyme and mediator (Ferritin). The PIn-MWCNT scaffold is prepared via in situ chemical oxidative polymerization of indole on the surface of MWCNT and assessed by myriad techniques. The micrograph of scanning electron microscopy (SEM) designated the interconnected morphology of MWCNTs in the polymer matrix. X-ray diffraction spectroscopy (XRD) and Fourier transform infrared spectroscopy (FTIR), confirm the crystallinity and different functional groups available in the synthesized material, respectively. The electrochemical assessment demonstrates that the ZnO/PIn-MWCNT/Frt/GOx nanobiocatalyst exhibits much higher electrocatalytic activity towards the oxidation of glucose with a maximum current density of 4.9 mA cm-2 by consuming 50 mM glucose concentration in phosphate buffer saline (PBS) (pH 7.4) as the testing solution by applying 100 mVs-1 scan rates. The outcomes reflect that the as-prepared ZnO/PIn-MWCNTs/Frt/GOx biocomposite is a promising bioanode for the development of EBFCs.
Collapse
Affiliation(s)
- Inamuddin
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia.
| | - Nimra Shakeel
- Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Mohd Imran Ahamed
- Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Suvardhan Kanchi
- Department of Chemistry, Faculty of Applied Science, Durban University of Technology, Durban, 4000, South Africa
| | - Heba Abbas Kashmery
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia
| |
Collapse
|