1
|
Kim BH, Hwang J, Akoh CC. Liquid microbial lipase – Recent applications and expanded use through immobilization. Curr Opin Food Sci 2023. [DOI: 10.1016/j.cofs.2023.100987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
2
|
Tsai MF, Huang SM, Huang HY, Tsai SW, Kuo CH, Shieh CJ. Ultrasound Plus Vacuum-System-Assisted Biocatalytic Synthesis of Octyl Cinnamate and Response Surface Methodology Optimization. Molecules 2022; 27:molecules27217148. [PMID: 36363974 PMCID: PMC9657652 DOI: 10.3390/molecules27217148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022] Open
Abstract
Cinnamic acid is one of the phenolic compounds that is isolated from cinnamon, or other natural plants, and has a wide range of physiological activities. However, the application of cinnamic acid is limited due to its poor solubility and low oral bioavailability. In this study, the feasibility of producing octyl cinnamate by ultrasonic assistance, combined with a rotary evaporation under vacuum, was studied using methyl cinnamate and octanol as the starting materials. A Box–Behnken design (BBD) was employed to evaluate the effects of the operation parameters, including reaction temperature (55–75 °C), reaction time (4–12 h), and ultrasonic power (90–150 W) on the production of octyl cinnamate. Meanwhile, the synthesis process was further optimized by the modeling response surface methodology (RSM). The data indicated that octyl cinnamate was efficiently synthesized from methyl cinnamate and octanol using the ultrasound plus vacuum system; further, this system was superior to the conventional method. According to the RSM model for the actual experiments, a reaction temperature of 74.6 °C, a reaction time of 11.1 h, and an ultrasound power of 150 W were determined to be the best conditions for the maximum molar conversion of octyl cinnamate (93.8%). In conclusion, the highly efficient synthesis of octyl cinnamate by a rotary evaporator with an ultrasound plus vacuum system was achieved via RSM optimization.
Collapse
Affiliation(s)
- Ming-Fang Tsai
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Shang-Ming Huang
- Department of Nutrition, China Medical University, Taichung 406, Taiwan
| | - Hsin-Yi Huang
- Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Shuo-Wen Tsai
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: (S.-W.T.); (C.-H.K.); (C.-J.S.)
| | - Chia-Hung Kuo
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
- Center for Aquatic Products Inspection Service, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
- Correspondence: (S.-W.T.); (C.-H.K.); (C.-J.S.)
| | - Chwen-Jen Shieh
- Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: (S.-W.T.); (C.-H.K.); (C.-J.S.)
| |
Collapse
|
3
|
|
4
|
Lipase-catalyzed synthesis of 2-ethylhexyl palmitate in a solvent free system using step changes in temperature. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108261] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Ju C, Lee YJ, Yoon HS, Kim BH, Kim IH. Efficient Synthesis of Stearidonic Acid Enriched Triacylglycerol from Ahiflower Seed Oil via a Two-Step Enzyme Reaction. J Oleo Sci 2022; 71:1679-1688. [DOI: 10.5650/jos.ess22215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Changhwan Ju
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University
| | - Yu Jin Lee
- BK21FOUR R&E Center for Learning Health Systems, Korea University
| | - Hui Su Yoon
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University
| | - Byung Hee Kim
- Department of Food and Nutrition, Sookmyung Women’s University
| | - In-Hwan Kim
- BK21FOUR R&E Center for Learning Health Systems, Korea University
| |
Collapse
|
6
|
Montiel MC, Asensi M, Gimeno-Martos S, Máximo F, Bastida J. Sustainable Biocatalytic Procedure for Obtaining New Branched Acid Esters. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6847. [PMID: 34832249 PMCID: PMC8625366 DOI: 10.3390/ma14226847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022]
Abstract
Biocatalytic synthesis of 2-ethylhexyl 2-methylhexanoate is described in this work for the first time. This branched-chain ester is suitable for use at low temperatures in numerous applications. The immobilized lipase Novozym® 435 has demonstrated its ability to catalyze the ester synthesis from 2-ethylhexanol and 2-methylhexanoic acid in a solvent-free medium. The high reaction times that are required result in a loss of alcohol by evaporation, which must be compensated for with an excess of this substrate if high conversions are to be achieved. Therefore, two strategies are established: 70 °C with a 10% excess of alcohol, which requires a longer operating time and provides conversions of 97%, and 80 °C with a 20% excess of alcohol, which allows for the achievement of a 99% conversion in a shorter time. The optimal reaction conditions have been chosen based on reusability of the enzyme, process productivity, green metrics and preliminary economic study. When the synthesis is carried out under the best conditions (70 °C, 10% molar excess of alcohol and six uses of the immobilized enzyme) a productivity of 203.84 kg product × kg biocatalyst-1 is attained. The biocatalytic procedure matches many of the objectives of "green chemistry" and is suitable to be scaled up and used in industrial manufacturing.
Collapse
Affiliation(s)
| | | | | | | | - Josefa Bastida
- Chemical Engineering Department, Faculty of Chemistry, Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain; (M.C.M.); (M.A.); (S.G.-M.); (F.M.)
| |
Collapse
|
7
|
Kim JW, Kim BH, Kim Y, Lee M, Im DJ, Kim I. Lipase‐mediated
synthesis of neopentyl glycol diester using a combination of reduced and standard pressure. J AM OIL CHEM SOC 2021. [DOI: 10.1002/aocs.12532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ji Won Kim
- Department of Integrated Biomedical and Life Science, Graduate School Korea University Seoul Republic of Korea
| | - Byung Hee Kim
- Department of Food and Nutrition Sookmyung Women's University Seoul Republic of Korea
| | - Yangha Kim
- Department of Nutritional Science and Food Management Ewha Womans University Seoul Republic of Korea
| | | | - Dong Joong Im
- Natural Products Laboratory DaebongLS Co., Ltd Incheon Republic of Korea
| | - In‐Hwan Kim
- Department of Integrated Biomedical and Life Science, Graduate School Korea University Seoul Republic of Korea
- BK21FOUR R&E Center for Learning Health Systems Korea University Seoul Republic of Korea
| |
Collapse
|
8
|
de Castro MDC, Garcia PS, Andrade MM, Grossmann MVE, Simões BM, Samulewski RB, Baron AM. Lipase immobilization on biodegradable film with sericin. Biotechnol Appl Biochem 2021; 69:660-667. [PMID: 34053116 DOI: 10.1002/bab.2141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 02/24/2021] [Indexed: 11/06/2022]
Abstract
An ecofriendly and low-cost film composed by cassava starch, polyvinyl alcohol, and sericin blend (CS-PVA-SS) was synthesized, characterized, and applied as a novel support for Botryosphaeria ribis EC-01 lipase immobilization by enzyme-film-enzyme adsorption. Film revealed thickness between 230 and 309 μm and higher flexibility and malleability in comparison with film without SS. Based on p-nitrophenyl palmitate hydrolysis reaction, the activity retention of immobilized lipase was 987%. For optimal conditions, the yield in ethyl oleate was 95% for immobilized enzyme. Maximum yield was obtained at 49°C, molar ratio oleic acid:ethanol of 1:3, 1.25 g lipase film or 50 U (1.03 ± 0.03 mg protein) and 30 h. Even after seven cycles of use, immobilized lipase showed 52% reduction in ester yield. Biodegradable and biorenewable film is a promising material as a support to immobilize lipases and application in biocatalysis.
Collapse
Affiliation(s)
- Michael da Conceição de Castro
- Universidade Tecnológica Federal do Paraná, Câmpus Apucarana - Coordenação de Licenciatura em Química (COLIQ), Apucarana, PR, Brazil
| | - Patrícia Salomão Garcia
- Universidade Tecnológica Federal do Paraná, Câmpus Apucarana - Coordenação de Licenciatura em Química (COLIQ), Apucarana, PR, Brazil
| | - Milena Martins Andrade
- Universidade Tecnológica Federal do Paraná, Câmpus Apucarana - Coordenação de Licenciatura em Química (COLIQ), Apucarana, PR, Brazil
| | | | - Bruno Matheus Simões
- Departamento de Ciência e Tecnologia de Alimentos, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Rafael Block Samulewski
- Universidade Tecnológica Federal do Paraná, Câmpus Apucarana - Coordenação de Licenciatura em Química (COLIQ), Apucarana, PR, Brazil
| | - Alessandra Machado Baron
- Universidade Tecnológica Federal do Paraná, Câmpus Apucarana - Coordenação de Licenciatura em Química (COLIQ), Apucarana, PR, Brazil
| |
Collapse
|
9
|
Aghaei H, Yasinian A, Taghizadeh A. Covalent immobilization of lipase from Candida rugosa on epoxy-activated cloisite 30B as a new heterofunctional carrier and its application in the synthesis of banana flavor and production of biodiesel. Int J Biol Macromol 2021; 178:569-579. [PMID: 33667558 DOI: 10.1016/j.ijbiomac.2021.02.146] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 12/11/2022]
Abstract
In this paper, an epoxy-activated cloisite (ECL) was prepared as a new heterofunctional carrier via a reaction between cloisite 30B (CL) and epichlorohydrin and utilized for covalent immobilization of lipase from Candida rugosa. The lipase immobilized on the ECL (LECL) was successfully used in the olive oil hydrolysis, synthesis of isoamyl acetate (banana flavor), and biodiesel production. The TGA, FT-IR, SEM, and XRD were used to characterize CL, ECL, and LECL. The influences of temperature, pH, thermal stability, and storage capacity were examined in the olive oil hydrolysis. The effects of solvent, temperature, time, water content, and substrates molar ratio on the yields of ester and biodiesel were also investigated. In the optimized conditions, the hydrolytic activity of LECL was 1.85 ± 0.05 U/ mg, and the maximum yield of ester and biodiesel was 91.6% and 95.4%, respectively. The LECL showed good thermal stability and storage capacity compared to the free lipase. Additionally, LECL was reusable for both esterification and transesterification after being used for nine cycles.
Collapse
Affiliation(s)
- Hamidreza Aghaei
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran.
| | - Atefeh Yasinian
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran
| | - Ameneh Taghizadeh
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran
| |
Collapse
|
10
|
Sousa RR, Silva AS, Fernandez-Lafuente R, Ferreira-Leitão VS. Solvent-free esterifications mediated by immobilized lipases: a review from thermodynamic and kinetic perspectives. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00696g] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Esters are a highly relevant class of compounds in the industrial context, and biocatalysis applied to ester syntheses is already a reality for some chemical companies.
Collapse
Affiliation(s)
- Ronaldo Rodrigues Sousa
- Biocatalysis Laboratory, National Institute of Technology, Ministry of Science, Technology, and Innovations, 20081-312, Rio de Janeiro, RJ, Brazil
| | - Ayla Sant'Ana Silva
- Biocatalysis Laboratory, National Institute of Technology, Ministry of Science, Technology, and Innovations, 20081-312, Rio de Janeiro, RJ, Brazil
- Federal University of Rio de Janeiro, Department of Biochemistry, 21941-909, Rio de Janeiro, RJ, Brazil
| | - Roberto Fernandez-Lafuente
- Biocatalysis Department, ICP-CSIC, Campus UAM-CSIC, Madrid 28049, Spain
- Center of Excellence in Bionanoscience Research, External Scientific Advisory Academics, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Viridiana Santana Ferreira-Leitão
- Biocatalysis Laboratory, National Institute of Technology, Ministry of Science, Technology, and Innovations, 20081-312, Rio de Janeiro, RJ, Brazil
- Federal University of Rio de Janeiro, Department of Biochemistry, 21941-909, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
11
|
Serrano-Arnaldos M, Ortega-Requena S, Sánchez JÁ, Hernández A, Montiel MC, Máximo F, Bastida J. Sustainable synthesis of branched-chain diesters. J Biotechnol 2020; 325:91-99. [PMID: 33188808 DOI: 10.1016/j.jbiotec.2020.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 01/30/2023]
Abstract
Esters from branched alcohols and dicarboxylic linear acids are widely used as lube bases due to their good performance at low temperatures. This work proposes a new process to synthesize bis(2-ethylbutyl) adipate and bis(2-ethylbutyl) sebacate by using the lipase-based catalyst Novozym® 435 in a solvent-free system. Different reaction strategies have been tested in order to minimize 2-ethyl-1-butanol losses due to its evaporation and optimum operation conditions have been determined: 2.5 % of biocatalyst, 50 °C and a molar excess of alcohol of 15 % for the adipic diester and of 25 % for the sebacic one. It has also been proven that the immobilized enzyme can be reused in seven successive reaction cycles, achieving high yields without an appreciable reduction of activity. This biocatalytic pathway is a promising basis for the development of a more sustainable large scale process for obtaining biodegradable lubricants, as it is pointed out by productivity, economic and green metrics calculations.
Collapse
Affiliation(s)
- Mar Serrano-Arnaldos
- Department of Chemical Engineering, University of Murcia, Campus de Espinardo, 30071 Murcia, Spain.
| | - Salvadora Ortega-Requena
- Department of Chemical Engineering, University of Murcia, Campus de Espinardo, 30071 Murcia, Spain.
| | - José Ángel Sánchez
- Department of Chemical Engineering, University of Murcia, Campus de Espinardo, 30071 Murcia, Spain.
| | - Adrián Hernández
- Department of Chemical Engineering, University of Murcia, Campus de Espinardo, 30071 Murcia, Spain.
| | - María Claudia Montiel
- Department of Chemical Engineering, University of Murcia, Campus de Espinardo, 30071 Murcia, Spain.
| | - Fuensanta Máximo
- Department of Chemical Engineering, University of Murcia, Campus de Espinardo, 30071 Murcia, Spain.
| | - Josefa Bastida
- Department of Chemical Engineering, University of Murcia, Campus de Espinardo, 30071 Murcia, Spain.
| |
Collapse
|
12
|
Composites of Crosslinked Aggregates of Eversa® Transform and Magnetic Nanoparticles. Performance in the Ethanolysis of Soybean Oil. Catalysts 2020. [DOI: 10.3390/catal10080817] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Eversa® Transform 2.0 has been launched to be used in free form, but its immobilization may improve its performance. This work aimed to optimize the immobilization of Eversa® Transform 2.0 by the crosslinked enzyme aggregates (CLEAs) technique, using almost all the available tools to improve its performance. Several variables in the CLEA preparation were optimized to improve the recovered activity, such as precipitant nature and crosslinker concentration. Moreover, some feeders were co-precipitated to improve the crosslinking step, such as bovine serum albumin, soy protein, or polyethyleneimine. Starch (later enzymatically degraded) was utilized as a porogenic agent to decrease the substrate diffusion limitations. Silica magnetic nanoparticles were also utilized to simplify the CLEA handling, but it was found that a large percentage of the Eversa activity could be immobilized on these nanoparticles before aggregation. The best CLEA protocol gave a 98.9% immobilization yield and 30.1% recovered activity, exhibited a porous structure, and an excellent performance in the transesterification of soybean oil with ethanol: 89.8 wt% of fatty acid ethyl esters (FAEEs) yield after 12 h of reaction, while the free enzyme required a 48 h reaction to give the same yield. A caustic polishing step of the product yielded a biodiesel containing 98.9 wt% of FAEEs and a free fatty acids content lower than 0.25%, thus the final product met the international standards for biodiesel. The immobilized biocatalyst could be reused for at least five 12 h-batches maintaining 89.6% of the first-batch yield, showing the efficient catalyst recovery by applying an external magnetic field.
Collapse
|
13
|
Cai X, Zhang M, Wei W, Zhang Y, Wang Z, Zheng J. The Immobilization of Candida antarctica lipase B by ZIF-8 encapsulation and macroporous resin adsorption: preparation and characterizations. Biotechnol Lett 2019; 42:269-276. [DOI: 10.1007/s10529-019-02771-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/20/2019] [Indexed: 12/16/2022]
|