1
|
Liu X, Zhang Y, Qi X, Zhao D, Rao H, Zhao X, Li Y, Liu J, Qin Z, Hao J, Liu X. Advances of microbial xylanases in the application of flour industries: A comprehensive review. Int J Biol Macromol 2024; 282:137205. [PMID: 39489265 DOI: 10.1016/j.ijbiomac.2024.137205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Microbial xylanase has a wide range of applications, and many researchers favoring its utilization as an alternative to improve flour products. Wheat flour is the main raw material of flour products, although the content of arabinoxylan is not high in flour products, but it has a great influence on the quality of flour products, microbial xylanase can act on wheat arabinoxylan, so as to play the role of flour product improvement. This review carries out a description of the research progress on the application of xylanases in flour products in terms of xylanase properties, different families of xylanases and improvement mechanisms of xylanases in flour products. According to the properties of various microbial sources of xylanases, the suitable xylanase can be added to flour products, and the effect of xylanase towards wheat arabinoxylan in flour can be used to improve the quality of flour products. The molecular modification based on the properties of xylanase and the crystal structure of different families of xylanase and their substrate specificity toward wheat arabinoxylan are discussed. The article reviews the information about microbial xylanases in order to achieve better results in flour products and to provide a theoretical basis for their industrial application.
Collapse
Affiliation(s)
- Xingyu Liu
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China
| | - Yuxi Zhang
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China
| | - Xiaoya Qi
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China
| | - Dandan Zhao
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China
| | - Huan Rao
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China
| | - Xia Zhao
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China
| | - Yanxiao Li
- College of Engineering, China Agricultural University, Haidian District, No. 17 Qinghua East Road, Beijing 100083, People's Republic of China
| | - Jun Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Haidian District, No. 17 Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Zhen Qin
- School of Life Sciences, Shanghai University, Baoshan District, No. 99 Shangda Road, Shanghai, 200444, People's Republic of China
| | - Jianxiong Hao
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China.
| | - Xueqiang Liu
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China.
| |
Collapse
|
2
|
Duan S, Wu Y, Chao T, Zhang N, Wei Z, Ji R. Improving the catalytic activity and thermostability of Aspergillus niger xylanase through computational design. Protein Expr Purif 2024; 223:106561. [PMID: 39094812 DOI: 10.1016/j.pep.2024.106561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Xylanase plays the most important role in catalyzing xylan to xylose moieties. GH11 xylanases have been widely used in many fields, but most GH11 xylanases are mesophilic enzymes. To improve the catalytic activity and thermostability of Aspergillus niger xylanase (Xyn-WT), we predicted potential key mutation sites of Xyn-WT through multiple computer-aided enzyme engineering strategies. We introduce a simple and economical Ni affinity chromatography purification method to obtain high-purity xylanase and its mutants. Ten mutants (Xyn-A, Xyn-B, Xyn-C, E45T, Q93R, E45T/Q93R, A161P, Xyn-D, Xyn-E, Xyn-F) were identified. Among the ten mutants, four (Xyn-A, Xyn-C, A161P, Xyn-F) presented improved thermal stability and activity, with Xyn-F(A161P/E45T/Q93R) being the most thermally stable and active. Compared with Xyn-WT, after heat treatment at 55 °C and 60 °C for 10 min, the remaining enzyme activity of Xyn-F was 12 and 6 times greater than that of Xyn-WT, respectively, and Xyn-F was approximately 1.5 times greater than Xyn-WT when not heat treated. The pH adaptation of Xyn-F was also significantly enhanced. In summary, an improved catalytic activity and thermostability of the design variant Xyn-F has been reported.
Collapse
Affiliation(s)
- Shuyan Duan
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, Shandong, 277160, China.
| | - Yaoyao Wu
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, Shandong, 277160, China
| | - Tianzhu Chao
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, Shandong, 277160, China
| | - Nan Zhang
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, Shandong, 277160, China
| | - Zhaoyi Wei
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, Shandong, 277160, China
| | - Rui Ji
- Shandong Academy of Pharmaceutical Sciences, Key Laboratory of Biopharmaceuticals, Jinan, 250101, China.
| |
Collapse
|
3
|
You Y, Kong H, Li C, Gu Z, Ban X, Li Z. Carbohydrate binding modules: Compact yet potent accessories in the specific substrate binding and performance evolution of carbohydrate-active enzymes. Biotechnol Adv 2024; 73:108365. [PMID: 38677391 DOI: 10.1016/j.biotechadv.2024.108365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
Carbohydrate binding modules (CBMs) are independent non-catalytic domains widely found in carbohydrate-active enzymes (CAZymes), and they play an essential role in the substrate binding process of CAZymes by guiding the appended catalytic modules to the target substrates. Owing to their precise recognition and selective affinity for different substrates, CBMs have received increasing research attention over the past few decades. To date, CBMs from different origins have formed a large number of families that show a variety of substrate types, structural features, and ligand recognition mechanisms. Moreover, through the modification of specific sites of CBMs and the fusion of heterologous CBMs with catalytic domains, improved enzymatic properties and catalytic patterns of numerous CAZymes have been achieved. Based on cutting-edge technologies in computational biology, gene editing, and protein engineering, CBMs as auxiliary components have become portable and efficient tools for the evolution and application of CAZymes. With the aim to provide a theoretical reference for the functional research, rational design, and targeted utilization of novel CBMs in the future, we systematically reviewed the function-related characteristics and potentials of CAZyme-derived CBMs in this review, including substrate recognition and binding mechanisms, non-catalytic contributions to enzyme performances, module modifications, and innovative applications in various fields.
Collapse
Affiliation(s)
- Yuxian You
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Haocun Kong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Ban
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China.
| |
Collapse
|
4
|
Huang J, Zhang D, Omedi JO, Lei Y, Su X, Wu M, Huang W. Improving the inhibitory resistance of xylanase FgXyn11C from Fusarium graminearum to SyXIP-I by site-directed mutagenesis. Int J Biol Macromol 2024; 271:132434. [PMID: 38788879 DOI: 10.1016/j.ijbiomac.2024.132434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
The aim of this study was to improve the inhibitory resistance of xylanase FgXyn11C from Fusarium graminearum to XIP in cereal flour. Site saturation mutagenesis was performed using computer-aided redesign. Firstly, based on multiple primary structure alignments, the amino acid residues in the active site architecture were identified, and specific residue T144 in the thumb region of FgXyn11C was selected for site-saturation mutagenesis. After screening, FgXyn11CT144F was selected as the best mutant, as it displayed the highest enzymatic activity and resistance simultaneously compared to other mutants. The specific activity of FgXyn11CT144F was 208.8 U/mg and it exhibited complete resistance to SyXIP-I. Compared with the wild-type, FgXyn11CT144F displayed similar activity and the most resistant against SyXIP-I. The optimal temperature and pH of the wild-type and purified FgXyn11CT144F were similar at pH 5.0 and 30 °C. Our findings provided preliminary insight into how the specific residue at position 144 in the thumb region of FgXyn11C influenced the enzymatic properties and interacted with SyXIP-I. The inhibition sensitivity of FgXyn11C was reduced through directed evolution, leading to creation of the mutant enzyme FgXyn11CT144F. The FgXyn11CT144F resistance to SyXIP-I has potential application and can also provide references for engineering other resistant xylanases of the GHF11.
Collapse
Affiliation(s)
- Jing Huang
- State Key Laboratory of Food Science and Technology, the Laboratory of Baking and Fermentation Science, Cereals/Sourdough and Ingredient Functionality Research, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Dong Zhang
- School of Biotechnology, Jiangnan University, Wuxi 214122, China; Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Jacob Ojobi Omedi
- State Key Laboratory of Food Science and Technology, the Laboratory of Baking and Fermentation Science, Cereals/Sourdough and Ingredient Functionality Research, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuqing Lei
- School of Biotechnology, Jiangnan University, Wuxi 214122, China; Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Xiaoya Su
- School of Biotechnology, Jiangnan University, Wuxi 214122, China; Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Minchen Wu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China.
| | - Weining Huang
- State Key Laboratory of Food Science and Technology, the Laboratory of Baking and Fermentation Science, Cereals/Sourdough and Ingredient Functionality Research, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
5
|
Boukid F, Ganeshan S, Wang Y, Tülbek MÇ, Nickerson MT. Bioengineered Enzymes and Precision Fermentation in the Food Industry. Int J Mol Sci 2023; 24:10156. [PMID: 37373305 DOI: 10.3390/ijms241210156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Enzymes have been used in the food processing industry for many years. However, the use of native enzymes is not conducive to high activity, efficiency, range of substrates, and adaptability to harsh food processing conditions. The advent of enzyme engineering approaches such as rational design, directed evolution, and semi-rational design provided much-needed impetus for tailor-made enzymes with improved or novel catalytic properties. Production of designer enzymes became further refined with the emergence of synthetic biology and gene editing techniques and a plethora of other tools such as artificial intelligence, and computational and bioinformatics analyses which have paved the way for what is referred to as precision fermentation for the production of these designer enzymes more efficiently. With all the technologies available, the bottleneck is now in the scale-up production of these enzymes. There is generally a lack of accessibility thereof of large-scale capabilities and know-how. This review is aimed at highlighting these various enzyme-engineering strategies and the associated scale-up challenges, including safety concerns surrounding genetically modified microorganisms and the use of cell-free systems to circumvent this issue. The use of solid-state fermentation (SSF) is also addressed as a potentially low-cost production system, amenable to customization and employing inexpensive feedstocks as substrate.
Collapse
Affiliation(s)
- Fatma Boukid
- ClonBio Group Ltd., 6 Fitzwilliam Pl, D02 XE61 Dublin, Ireland
| | | | - Yingxin Wang
- Saskatchewan Food Industry Development Centre, Saskatoon, SK S7M 5V1, Canada
| | | | - Michael T Nickerson
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| |
Collapse
|
6
|
Ji S, Gavande PV, Choudhury B, Goyal A. Computational design and structure dynamics analysis of bifunctional chimera of endoxylanase from Clostridium thermocellum and xylosidase from Bacteroides ovatus. 3 Biotech 2023; 13:59. [PMID: 36714550 PMCID: PMC9877272 DOI: 10.1007/s13205-023-03482-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023] Open
Abstract
Development of chimeric enzymes by protein engineering can more efficiently contribute toward biomass conversion for bioenergy generation. Therefore, prior to experimental validation, a computational approach by modeling and molecular dynamic simulation can assess the structural and functional behavior of chimeric enzymes. In this study, a bifunctional chimera, CtXyn11A-BoGH43A comprising an efficient endoxylanase (CtXyn11A) from Clostridium thermocellum and xylosidase (BoGH43A) from Bacteroides ovatus was computationally designed and its binding and stability analysis with xylooligosaccharides were performed. The modeled chimera showed β-jellyroll fold for CtXyn11A and 5-bladed β-propeller fold for BoGH43A module. Stereo-chemical properties analyzed by Ramachandran plot showed 98.8% residues in allowed region, validating the modeled chimera. The catalytic residues identified by multiple sequence alignment were Glu94 and Glu184 for CtXyn11A and Asp229 and Glu384 for BoGH43A modules. CtXyn11A followed retaining-type, whereas BoGH43A enforced inverting-type of reaction mechanism during xylan hydrolysis as revealed by superposition and GH11 and GH43 familial analyses. Molecular docking studies showed binding energy, (ΔG) - 4.54 and - 4.18 kcal/mol for CtXyn11A and BoGH43A modules of chimera, respectively, with xylobiose, while - 3.94 and - 3.82 kcal/mol for CtXyn11A and BoGH43A modules of chimera, respectively, with xylotriose. MD simulation of CtXyn11A-BoGH43A complexed with xylobiose and xylotriose till 100 ns displayed stability by RMSD, compactness by R g and conformational stability by SASA analyses. The lowered values of RMSF in active-site residues, Glu94, Glu184, Asp229, Asp335 and Glu384 confirmed the efficient binding of chimera with xylobiose and xylotriose. These results were in agreement with the earlier experimental studies on CtXyn11A releasing xylooligosaccharides from xylan and BoGH43A releasing d-xylose from xylooligosaccharides and xylobiose. The chimera showed stronger affinity in terms of total short-range interaction energy; - 190 and - 121 kJ/mol for with xylobiose and xylotriose, respectively. The bifunctional chimera, CtXyn11A-BoGH43A showed stability and integrity with xylobiose and xylotriose. The designed chimera can be constructed and applied for efficient biomass conversion.
Collapse
Affiliation(s)
- Shyam Ji
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
| | - Parmeshwar Vitthal Gavande
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
| | - Bipasha Choudhury
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
| | - Arun Goyal
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
| |
Collapse
|
7
|
Tian W, Zhang Z, Yang C, Li P, Xiao J, Wang R, Du P, Li N, Wang J. Engineering mesophilic GH11 xylanase from Cellulomonas flavigena by rational design of N-terminus substitution. Front Bioeng Biotechnol 2022; 10:1044291. [DOI: 10.3389/fbioe.2022.1044291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Xylanase, a glycoside hydrolase, is widely used in the food, papermaking, and textile industries; however, most xylanases are inactive at high temperatures. In this study, a xylanase gene, CFXyl3, was cloned from Cellulomonas flavigena and expressed in Escherichia coli BL21 (DE3). To improve the thermostability of xylanase, four hybrid xylanases with enhanced thermostability (designated EcsXyl1–4) were engineered from CFXyl3, guided by primary and 3D structure analyses. The optimal temperature of CFXyl3 was improved by replacing its N-terminus with the corresponding area of SyXyn11P, a xylanase that belongs to the hyperthermostable GH11 family. The optimal temperatures of the hybrid xylanases EcsXyl1–4 were 60, 60, 65, and 85°C, respectively. The optimal temperature of EcsXyl4 was 30 C higher than that of CFXyl3 (55°C) and its melting temperature was 34.5°C higher than that of CFXyl3. After the hydrolysis of beechwood xylan, the main hydrolysates were xylotetraose, xylotriose, and xylobiose; thus, these hybrid xylanases could be applied to prebiotic xylooligosaccharide manufacturing.
Collapse
|
8
|
Effects of Site-Directed Mutations on the Communicability between Local Segments and Binding Pocket Distortion of Engineered GH11 Xylanases Visualized through Network Topology Analysis. Catalysts 2022. [DOI: 10.3390/catal12101165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Mutations occurred within the binding pocket of enzymes directly modified the interaction network between an enzyme and its substrate. However, some mutations affecting the catalytic efficiency occurred far from the binding pocket and the explanation regarding mechanisms underlying the transmission of the mechanical signal from the mutated site to the binding pocket was lacking. In this study, network topology analysis was used to characterize and visualize the changes of interaction networks caused by site-directed mutations on a GH11 xylanase from our previous study. For each structure, coordinates from molecular dynamics (MD) trajectory were obtained to create networks of representative atoms from all protein and xylooligosaccharide substrate residues, in which edges were defined between pairs of residues within a cutoff distance. Then, communicability matrices were extracted from the network to provide information on the mechanical signal transmission from the number of possible paths between any residue pairs or local protein segments. The analysis of subgraph centrality and communicability clearly showed that site-direct mutagenesis at non-reducing or reducing ends caused binding pocket distortion close to the opposite ends and created denser interaction networks. However, site-direct mutagenesis at both ends cancelled the binding pocket distortion, while enhancing the thermostability. Therefore, the network topology analysis tool on the atomistic simulations of engineered proteins could play some roles in protein design for the minimization to the correction of binding pocket tilting, which could affect the functionality and efficacy of enzymes.
Collapse
|
9
|
Wang J, Zhang S, Li C, Liu X, Xu Z, Wang T. Efficient secretion of xylanase in Escherichia coli for production of prebiotic xylooligosaccharides. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Kuwata K, Suzuki M, Takita T, Yatsunami R, Nakamura S, Yasukawa K. The mutation of Thr315 to Asn of GH10 xylanase XynR increases the alkaliphily but decreases the alkaline resistance. Biosci Biotechnol Biochem 2021; 85:1853-1860. [PMID: 34077498 DOI: 10.1093/bbb/zbab102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/26/2021] [Indexed: 11/13/2022]
Abstract
XynR is a thermophilic and alkaline GH10 xylanase, identified in the culture broth of alkaliphilic and thermophilic Bacillus sp. strain TAR-1. We previously selected S92E as a thermostable variant from a site saturation mutagenesis library. Here, we attempted to select the alkaliphilic XynR variant from the library and isolated T315N. In the hydrolysis of beechwood xylan, T315N and S92E/T315N exhibited a broader bell-shaped pH-dependent activity than the wild-type (WT) XynR and S92E. The optimal pH values of T315N and S92E/T315N were 6.5-9.5 while those of WT and S92E were 6.5-8.5. On the other hand, T315N and S92E/T315N exhibited a narrower bell-shaped pH dependence of stability: the pHs at which the activity was stable after the incubation at 37 °C for 24 h were 6.0-8.5 for T315N and S92E/T315N, but 6.0-10.0 for WT and S92E. These results indicated that the mutation of Thr315 to Asn increased the alkaliphily but decreased the alkaline resistance.
Collapse
Affiliation(s)
- Kohei Kuwata
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Manami Suzuki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Teisuke Takita
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Rie Yatsunami
- Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Japan
| | - Satoshi Nakamura
- Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Japan.,National Institute of Technology, Numazu College, Ooka, Numazu, Shizuoka, Japan
| | - Kiyoshi Yasukawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
11
|
Suzuki M, Takita T, Kuwata K, Nakatani K, Li T, Katano Y, Kojima K, Mizutani K, Mikami B, Yatsunami R, Nakamura S, Yasukawa K. Insight into the mechanism of thermostabilization of GH10 xylanase from Bacillus sp. strain TAR-1 by the mutation of S92 to E. Biosci Biotechnol Biochem 2021; 85:386-390. [PMID: 33604642 DOI: 10.1093/bbb/zbaa003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/02/2020] [Indexed: 11/12/2022]
Abstract
The mechanism of thermostabilization of GH10 xylanase, XynR, from Bacillus sp. strain TAR-1 by the mutation of S92 to E was investigated. Thermodynamic analysis revealed that thermostabilization was driven by the decrease in entropy change of activation for thermal inactivation. Crystallographic analysis suggested that this mutation suppressed the fluctuation of the amino acid residues at position 92-95.
Collapse
Affiliation(s)
- Manami Suzuki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Teisuke Takita
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kohei Kuwata
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kota Nakatani
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Tongyang Li
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yuta Katano
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kenji Kojima
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kimihiko Mizutani
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Bunzo Mikami
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.,Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Rie Yatsunami
- Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Satoshi Nakamura
- Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8501, Japan.,National Institute of Technology, Numazu College, Ooka, Numazu, Shizuoka 410-8501, Japan
| | - Kiyoshi Yasukawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
12
|
Chen L, Yi Z, Fang Y, Jin Y, Xiao Y, Zhao D, Luo H, He H, Sun Q, Zhao H. Uncovering key residues responsible for the thermostability of a thermophilic 1,3(4)-β-d-glucanase from Nong flavor Daqu by rational design. Enzyme Microb Technol 2020; 142:109672. [PMID: 33220875 DOI: 10.1016/j.enzmictec.2020.109672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/20/2020] [Accepted: 09/16/2020] [Indexed: 11/17/2022]
Abstract
Fungal 1,3(4)-β-D-glucanases were usually applied in brewing and feedstuff industries, however, the thermostability limits the most their application. The characterized 1,3(4)-β-D-glucanase (NFEg16A) from Chinese Nong-flavor (NF) Daqu showed the highest thermostability among GH16 fungal 1,3(4)-β-D-glucanases, with half-lives of thermal inactivation (t1/2) of 44.9 min at 90 °C, so multiple rational designs were used to identify the key residues for its thermostability. Based on protein sequence and 3D structure analyses around the catalytic regions. Nine site-mutants were constructed, among which N173Y and S187A were identified as the most thermotolerant and thermolabile ones, with t1/2 values of 61 min and 14.0 min at 90 °C, respectively. Therefore, N173 and S187 were then selected as "hotspots" for site-saturation mutagenesis. Interestingly, most of the N173 and S187 variants exhibited a similar thermostability to that of N173Y and S187A, respectively, confirming their different roles in the thermostability of NFEg16A. In addition, each S187A and its surrounding substitutions (D144 N and T164 N) was independently detrimental to the thermostability of NFEg16A, since the t1/2 (90 °C) of S187A, D144 N and T164 N were 14.0 min, 20.6 min and 27.2 min, respectively. Surprisingly, combinatorial substitution of S187A with D144 N or T164 N showed positive effects on the thermostability, with the increase of t1/2 (90 °C) to 30.9 min and 63.5 min for S187A-D144 N and S187A-T164 N, respectively. More importantly, S187A-T164 N showed higher thermostability than that of wild type. In short, we successfully identified two key sites and their surrounding residues in response to the thermostability of NFEg16A and further improved its thermostability by several rational designs. These findings could be used for the protein engineering of homologous 1,3(4)-β-D-glucanases, as well as other enzyme family members with high similarities.
Collapse
Affiliation(s)
- Lanchai Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhuolin Yi
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Yang Fang
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Yanling Jin
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Yao Xiao
- Analytical and Testing Center, Sichuan University of Science and Engineering, Zigong 643000, PR China
| | - Dong Zhao
- Wuliangye Group, Yibin 644007, PR China
| | - Huibo Luo
- Liquor Making Bio-Technology & Application of Key Laboratory of Sichuan Province, Bioengineering College, Sichuan University of Science & Engineering, Zigong 64300, PR China
| | - Hui He
- Department of Liquor Making Engineering, Moutai College, Renhuai 564501, PR China
| | - Qun Sun
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China.
| | - Hai Zhao
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China.
| |
Collapse
|
13
|
Kurahashi R, Tanaka SI, Takano K. Highly active enzymes produced by directed evolution with stability-based selection. Enzyme Microb Technol 2020; 140:109626. [DOI: 10.1016/j.enzmictec.2020.109626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 12/22/2022]
|
14
|
Dhruw C, Husain K, Kumar V, Sonawane VC. Novel xylanase producing Bacillus strain X2: molecular phylogenetic analysis and its application for production of xylooligosaccharides. 3 Biotech 2020; 10:328. [PMID: 32656061 PMCID: PMC7334322 DOI: 10.1007/s13205-020-02322-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 06/24/2020] [Indexed: 11/24/2022] Open
Abstract
A Bacillus strain X2 that produced extracellular endo-xylanase (GH 11) (EC: 3.2.1.8) was isolated from the soil of the Northeast India region. This aerobic culture was Gram positive and endospore forming. Chemotaxonomic characterization showed variance with the fatty acid profile of related species in the Bacillus subtilis group. In Bacillus strain X2, distinct occurrence of iso-C14:0 lipids is absent in other related species. The 16S rRNA gene sequence homology showed 99% similarity with Bacillus subtilis subsp. inaquosorum. The phylogenetic analysis by the multilocus sequence analysis (MLSA) of the nucleotide sequence of six concatenated genes (16S rRNA, groEL, gyrA, polC, purH and rpoB) resolved the taxonomic position of the Bacillus strain X2 in the Bacillus subtilis subsp. group. The MLSA showed that it is a member of a clade that includes Bacillus subtilis subsp. stercoris. In in silico DNA-DNA hybridization (DDH), the highest matching score was obtained with Bacillus subtilis subsp. stercoris (87%). The in silico DDH of the genome (G + C 43.7 mol %) shared 48.5%, with Bacillus subtilis subsp. inaquosorum. The MLSA phylogenetic tree and the highest degree of DNA hybridization, indicating that it belongs to the Bacillus subtilis subspecies stercoris.
Collapse
Affiliation(s)
- Chandrabhan Dhruw
- BERPDC, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036 India
| | - Khadim Husain
- BERPDC, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036 India
| | - Vyas Kumar
- BERPDC, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036 India
| | | |
Collapse
|