1
|
Li Y, Sun X, Liu Y, Sun H, Zhou C, Peng Y, Gong T, Chen J, Chen T, Yang J, Zhu P. Construction and Optimization of a Yeast Cell Factory for Producing Active Unnatural Ginsenoside 3β- O-Glc 2-DM. ACS Synth Biol 2024; 13:3677-3685. [PMID: 39475179 DOI: 10.1021/acssynbio.4c00494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Ginsenosides are major active components of Panax ginseng, which are generally glycosylated at C3-OH and/or C20-OH of protopanaxadiol (PPD) and C6-OH and/or C20-OH of protopanaxatriol. However, the glucosides of dammarenediol-II (DM), which is the direct precursor of PPD, have scarcely been separated from P. ginseng. Because different positions and numbers of the hydroxyl and glycosyl groups lead to a diversity of structure and function of the ginsenosides, it can be inferred that DM glucosides may have different pharmacological activities compared with natural ginsenosides. Herein, we first constructed the cell factory for de novo biosynthesis of 3-O-(β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyl)-dammar-24-ene-3β,20S-diol (3β-O-Glc2-DM) by introducing the codon-optimized genes encoding dammarenediol-II synthase, two UDP-glycosyltransferases (UGTs) including UGT74AC1-M7 from Siraitia grosvenorii and UGTPg29 from P. ginseng in Saccharomyces cerevisiae via the CRISPR/Cas9 system. The titer of 3β-O-Glc2-DM was then increased from 18.9 to 148.0 mg/L by several metabolic engineering strategies including overexpressing the rate-limiting enzymes of triterpenoid biosynthesis, balancing carbon flux of biosynthetic pathways of triterpenoid and ergosterol, and engineering endoplasmic reticulum. Furthermore, the 3β-O-Glc2-DM titer of 766.3 mg/L was achieved through fed-batch fermentation in a 3-L bioreactor. Finally, in vitro assays demonstrated that 3β-O-Glc2-DM exhibited a protective effect on H/R-induced cardiomyocyte damage. This work provides a feasible approach for production of 3β-O-Glc2-DM as a potential cardioprotective drug candidate.
Collapse
Affiliation(s)
- Yanxin Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiaoyan Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yanxin Liu
- State Key Laboratory of Digestive Health, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hua Sun
- State Key Laboratory of Digestive Health, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Chen Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yu Peng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ting Gong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jingjing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Tianjiao Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jinling Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ping Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
2
|
Wang G, Wu Z, Li M, Liang X, Wen Y, Zheng Q, Li D, An T. Microbial production of 5- epi-jinkoheremol, a plant-derived antifungal sesquiterpene. Appl Environ Microbiol 2024; 90:e0119124. [PMID: 39283105 PMCID: PMC11497823 DOI: 10.1128/aem.01191-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/21/2024] [Indexed: 10/25/2024] Open
Abstract
Synthetic biology using microbial chassis is emerging as a powerful tool for the production of natural chemicals. In the present study, we constructed a microbial platform for the high-level production of a sesquiterpene from Catharanthus roseus, 5-epi-jinkoheremol, which exhibits strong fungicidal activity. First, the mevalonate and sterol biosynthesis pathways were optimized in engineered yeast to increase the metabolic flux toward the biosynthesis of the precursor farnesyl pyrophosphate. Then, the transcription factor Hac1- and m6A writer Ime4-based metabolic engineering strategies were implemented in yeast to increase 5-epi-jinkoheremol production further. Next, protein engineering was performed to improve the catalytic activity and enhance the stability of the 5-epi-jinkoheremol synthase TPS18, resulting in the variant TPS18I21P/T414S, with the most improved properties. Finally, the titer of 5-epi-jinkoheremol was elevated to 875.25 mg/L in a carbon source-optimized medium in shake flask cultivation. To the best of our knowledge, this is the first study to construct an efficient microbial cell factory for the sustainable production of this antifungal sesquiterpene.IMPORTANCEBiofungicides represent a new and sustainable tool for the control of crop fungal diseases. However, hindered by the high cost of biofungicide production, their use is not as popular as expected. Synthetic biology using microbial chassis is emerging as a powerful tool for the production of natural chemicals. We previously identified a promising sesquiterpenoid biofungicide, 5-epi-jinkoheremol. Here, we constructed a microbial platform for the high-level production of this chemical. The metabolic engineering of the terpene biosynthetic pathway was firstly employed to increase the metabolic flux toward 5-epi-jinkoheremol production. However, the limited catalytic activity of the key enzyme, TPS18, restricted the further yield of 5-epi-jinkoheremol. By using protein engineering, we improved its catalytic efficiency, and combined with the optimization of regulation factors, the highest production of 5-epi-jinkoheremol was achieved. Our work was useful for the larger-scale efficient production of this antifungal sesquiterpene.
Collapse
Affiliation(s)
- Guoli Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Zhenke Wu
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Mingkai Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Xiqin Liang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Yiwei Wen
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Qiusheng Zheng
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Defang Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Tianyue An
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| |
Collapse
|
3
|
Li T, Liu X, Xiang H, Zhu H, Lu X, Feng B. Two-Phase Fermentation Systems for Microbial Production of Plant-Derived Terpenes. Molecules 2024; 29:1127. [PMID: 38474639 PMCID: PMC10934027 DOI: 10.3390/molecules29051127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Microbial cell factories, renowned for their economic and environmental benefits, have emerged as a key trend in academic and industrial areas, particularly in the fermentation of natural compounds. Among these, plant-derived terpenes stand out as a significant class of bioactive natural products. The large-scale production of such terpenes, exemplified by artemisinic acid-a crucial precursor to artemisinin-is now feasible through microbial cell factories. In the fermentation of terpenes, two-phase fermentation technology has been widely applied due to its unique advantages. It facilitates in situ product extraction or adsorption, effectively mitigating the detrimental impact of product accumulation on microbial cells, thereby significantly bolstering the efficiency of microbial production of plant-derived terpenes. This paper reviews the latest developments in two-phase fermentation system applications, focusing on microbial fermentation of plant-derived terpenes. It also discusses the mechanisms influencing microbial biosynthesis of terpenes. Moreover, we introduce some new two-phase fermentation techniques, currently unexplored in terpene fermentation, with the aim of providing more thoughts and explorations on the future applications of two-phase fermentation technology. Lastly, we discuss several challenges in the industrial application of two-phase fermentation systems, especially in downstream processing.
Collapse
Affiliation(s)
- Tuo Li
- Correspondence: (T.L.); (B.F.)
| | | | | | | | | | - Baomin Feng
- College of Life and Health, Dalian University, Dalian 116622, China; (X.L.); (H.X.); (H.Z.); (X.L.)
| |
Collapse
|
4
|
Ishiwata-Kimata Y, Kimata Y. Fundamental and Applicative Aspects of the Unfolded Protein Response in Yeasts. J Fungi (Basel) 2023; 9:989. [PMID: 37888245 PMCID: PMC10608004 DOI: 10.3390/jof9100989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
Upon the dysfunction or functional shortage of the endoplasmic reticulum (ER), namely, ER stress, eukaryotic cells commonly provoke a protective gene expression program called the unfolded protein response (UPR). The molecular mechanism of UPR has been uncovered through frontier genetic studies using Saccharomyces cerevisiae as a model organism. Ire1 is an ER-located transmembrane protein that directly senses ER stress and is activated as an RNase. During ER stress, Ire1 promotes the splicing of HAC1 mRNA, which is then translated into a transcription factor that induces the expression of various genes, including those encoding ER-located molecular chaperones and protein modification enzymes. While this mainstream intracellular UPR signaling pathway was elucidated in the 1990s, new intriguing insights have been gained up to now. For instance, various additional factors allow UPR evocation strictly in response to ER stress. The UPR machineries in other yeasts and fungi, including pathogenic species, are another important research topic. Moreover, industrially beneficial yeast strains carrying an enforced and enlarged ER have been produced through the artificial and constitutive induction of the UPR. In this article, we review canonical and up-to-date insights concerning the yeast UPR, mainly from the viewpoint of the functions and regulation of Ire1 and HAC1.
Collapse
Affiliation(s)
| | - Yukio Kimata
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
| |
Collapse
|
5
|
Wang H, Zong C, Bai A, Yuan S, Li Y, Yu Z, Tian R, Liu T, Hou X, Li Y. Transcriptome sequencing and gas chromatography–mass spectrometry analyses provide insights into β-caryophyllene biosynthesis in Brassica campestris. FOOD CHEMISTRY: MOLECULAR SCIENCES 2022; 5:100129. [PMID: 36060474 PMCID: PMC9428917 DOI: 10.1016/j.fochms.2022.100129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/28/2022] [Accepted: 08/06/2022] [Indexed: 11/24/2022]
Abstract
β-Caryophyllene (BCP) was detected in Brassica campestris. BCP content changed in cultivars during developmental stages and MeJA treatment. In the phylogenetic analysis, the TPSa gene subfamily was divided into four groups The potential regulatory and transporter network of BCP was constructed.
Sesquiterpenes are important defensive secondary metabolites and aroma components. However, limited information is available on the mechanism of sesquiterpene formation and composition in the non-heading Chinese cabbage (NHCC) leaf. Therefore, headspace solid-phase microextraction/gas chromatography–mass spectrometry (HS-SPME/GC–MS) combined with transcriptome analysis was used to study the mechanism of volatile organic compound formation. A total of 26 volatile organic compounds were identified in two NHCC cultivars ‘SZQ’ and ‘XQC’ and their F1 hybrids. Among these, sesquiterpene β-caryophyllene was identified only in ‘XQC’ and F1. Five genes encoding caryophyllene synthase were identified. The candidate β-caryophyllene synthase genes BcTPSa11 and BcTPSa21 had high expression levels only in ‘XQC’ and F1. In addition, several transcription factors of MYB-related, MYB, bHLH, and AP2/ERF families were identified by co-expression, suggesting that they regulate β-caryophyllene biosynthesis. Our results provide a molecular basis for sesquiterpene biosynthesis as well as insights into the regulatory network of β-caryophyllene in NHCC.
Collapse
|
6
|
Fast-Growing Saccharomyces cerevisiae Cells with a Constitutive Unfolded Protein Response and Their Potential for Lipidic Molecule Production. Appl Environ Microbiol 2022; 88:e0108322. [PMID: 36255243 PMCID: PMC9642017 DOI: 10.1128/aem.01083-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae cells, dysfunction of the endoplasmic reticulum (ER), so-called ER stress, leads to conversion of HAC1 mRNA to the spliced form (HAC1i), which is translated into a transcription factor that drastically changes the gene expression profile. This cellular response ultimately enhances ER functions and is named the unfolded protein response (UPR). Artificial evocation of the UPR is therefore anticipated to increase productivity of beneficial materials on and in the ER. However, as demonstrated here, cells constitutively expressing HAC1i mRNA (HAC1i cells), which exhibited a strong UPR even under nonstress conditions, grew considerably slowly and frequently yielded fast-growing and low-UPR progeny. Intriguingly, growth of HAC1i cells was faster in the presence of weak ER stress that was induced by low concentrations of the ER stressor tunicamycin or by cellular expression of the ER-located version of green fluorescent protein (GFP). HAC1i cells producing ER-localized GFP stably exhibited a strong UPR activity, carried a highly expanded ER, and abundantly produced triglycerides and heterogenous carotenoids. We therefore propose that our findings provide a basis for metabolic engineering to generate cells producing valuable lipidic molecules. IMPORTANCE The UPR is thought to be a cellular response to cope with the accumulation of unfolded proteins in the ER. In S. cerevisiae cells, the UPR is severely repressed under nonstress conditions. The findings of this study shed light on the physiological significance of the tight regulation of the UPR. Constitutive UPR induction caused considerable growth retardation, which was partly rescued by the induction of weak ER stress. Therefore, we speculate that when the UPR is inappropriately induced in unstressed cells lacking aberrant ER client proteins, the UPR improperly impairs normal cellular functions. Another important point of this study was the generation of S. cerevisiae strains stably exhibiting a strong UPR activity and abundantly producing triglycerides and heterogenous carotenoids. We anticipate that our findings may be applied to produce valuable lipidic molecules using yeast cells as a potential next-generation technique.
Collapse
|
7
|
Xia F, Du J, Wang K, Liu L, Ba L, Liu H, Liu Y. Application of Multiple Strategies To Debottleneck the Biosynthesis of Longifolene by Engineered Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11336-11343. [PMID: 36047715 DOI: 10.1021/acs.jafc.2c04405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Longifolene as an important sesquiterpene had enormous biological benefits. However, the low productivity of longifolene relying on chemical catalysis and plant extraction limited its wide application. Herein, the longifolene biosynthetic pathway was introduced into Saccharomyces cerevisiae, and multiple genetic strategies were applied to debottleneck the synthesis of longifolene, including the regulation of the rate-limiting enzymes, the elimination of the competitive pathways, the screening of the molecular chaperone to improve synthase activity, and the enhancement of the precursor supply. After combinationally applying these optimum strategies, the production of longifolene reached 27.30 mg/L in shake flasks and 1249 mg/L in fed-batch fermentation, respectively, which was the highest yield of longifolene reported thus far. It was demonstrated that the strategies applied in our work were effective in promoting the biosynthesis of longifolene, which not only laid a significant foundation for its industrial production but also provided a platform for the synthesis of other terpenoids.
Collapse
Affiliation(s)
- Furong Xia
- Beijing Bioprocess Key Laboratory, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jingping Du
- Beijing Bioprocess Key Laboratory, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Kai Wang
- Beijing Bioprocess Key Laboratory, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Lu Liu
- Beijing Bioprocess Key Laboratory, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Limin Ba
- Zhongmu Research Institute, China Animal Husbandry Industry Company, Limited, Beijing 100095, People's Republic of China
| | - Huan Liu
- Beijing Bioprocess Key Laboratory, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yanhui Liu
- Beijing Bioprocess Key Laboratory, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
8
|
Shi Y, Dong T, Zeng B, Yao M, Wang Y, Xie Z, Xiao W, Yuan Y. Production of Plant Sesquiterpene Lactone Parthenolide in the Yeast Cell Factory. ACS Synth Biol 2022; 11:2473-2483. [PMID: 35723427 DOI: 10.1021/acssynbio.2c00132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Parthenolide, a kind of sesquiterpene lactone, is the direct precursor for the promising anti-glioblastoma drug ACT001. Compared with traditional parthenolide source from plant extraction, de novo biosynthesis of parthenolide in microorganisms has the potential to make a sustainable supply. Herein, an integrated strategy was designed with P450 source screening, nicotinamide adenine dinucleotide phosphate (NADPH) supply, and endoplasmic reticulum (ER) size rewiring to manipulate three P450s regarded as the bottleneck for parthenolide production. Germacrene A oxidase from Cichorium intybus, costunolide synthase from Lactuca sativa, and parthenolide synthase from Tanacetum parthenium have the best efficiency, resulting in a parthenolide titer of 2.19 mg/L, which was first achieved in yeast. The parthenolide titer was further increased by 300% with NADPH supplementation and ER expanding stepwise. Finally, the highest titers of 31.0 mg/L parthenolide and 648.5 mg/L costunolide in microbes were achieved in 2.0 L fed-batch fermentation. This study not only provides an alternative microbial platform for producing sesquiterpene lactones in a sustainable way but also highlights a general strategy for manipulating multiple plant-derived P450s in microbes.
Collapse
Affiliation(s)
- Yiting Shi
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Tianyu Dong
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Boxuan Zeng
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Mingdong Yao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Ying Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Zexiong Xie
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Wenhai Xiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China.,Georgia Tech Shenzhen Institute, Tianjin University, Tangxing Road 133, Nanshan District, Shenzhen 518071, China
| | - Yingjin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| |
Collapse
|
9
|
Wei P, Zhang C, Bian X, Lu W. Metabolic Engineering of Saccharomyces cerevisiae for Heterologous Carnosic Acid Production. Front Bioeng Biotechnol 2022; 10:916605. [PMID: 35721856 PMCID: PMC9201568 DOI: 10.3389/fbioe.2022.916605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/16/2022] [Indexed: 12/04/2022] Open
Abstract
Carnosic acid (CA), a phenolic tricyclic diterpene, has many biological effects, including anti-inflammatory, anticancer, antiobesity, and antidiabetic activities. In this study, an efficient biosynthetic pathway was constructed to produce CA in Saccharomyces cerevisiae. First, the CA precursor miltiradiene was synthesized, after which the CA production strain was constructed by integrating the genes encoding cytochrome P450 enzymes (P450s) and cytochrome P450 reductase (CPR) SmCPR. The CA titer was further increased by the coexpression of CYP76AH1 and SmCPR ∼t28SpCytb5 fusion proteins and the overexpression of different catalases to detoxify the hydrogen peroxide (H2O2). Finally, engineering of the endoplasmic reticulum and cofactor supply increased the CA titer to 24.65 mg/L in shake flasks and 75.18 mg/L in 5 L fed-batch fermentation. This study demonstrates that the ability of engineered yeast cells to synthesize CA can be improved through metabolic engineering and synthetic biology strategies, providing a theoretical basis for microbial synthesis of other diterpenoids.
Collapse
Affiliation(s)
- Panpan Wei
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Chuanbo Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xueke Bian
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Wenyu Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering of the Ministry of Education, Tianjin University, Tianjin, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
- *Correspondence: Wenyu Lu,
| |
Collapse
|
10
|
Expression of the human antiapoptotic protein Bcl-2 increases nerolidol production in engineered yeast. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Mediator Engineering of Saccharomyces cerevisiae To Improve Multidimensional Stress Tolerance. Appl Environ Microbiol 2022; 88:e0162721. [PMID: 35369708 DOI: 10.1128/aem.01627-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saccharomyces cerevisiae is a well-performing workhorse in chemical production, which encounters complex environmental stresses during industrial processes. We constructed a multiple stress tolerance mutant, Med15V76R/R84K, that was obtained by engineering the KIX domain of Mediator tail subunit Med15. Med15V76R/R84K interacted with transcription factor Hap5 to improve ARV1 expression for sterol homeostasis for decreasing membrane fluidity and thereby enhancing acid tolerance. Med15V76R/R84K interacted with transcription factor Mga2 to improve GIT1 expression for phospholipid biosynthesis for increasing membrane integrity and thereby improving oxidative tolerance. Med15V76R/R84K interacted with transcription factor Aft1 to improve NFT1 expression for inorganic ion transport for reducing membrane permeability and thereby enhancing osmotic tolerance. Based on this Med15 mutation, Med15V76R/R84K, the engineered S. cerevisiae strain, showed a 28.1% increase in pyruvate production in a 1.0-L bioreactor compared to that of S. cerevisiae with its native Med15. These results indicated that Mediator engineering provides a potential alternative for improving multidimensional stress tolerance in S. cerevisiae. IMPORTANCE This study identified the role of the KIX domain of Mediator tail subunit Med15 in response to acetic acid, H2O2, and NaCl in S. cerevisiae. Engineered KIX domain by protein engineering, the mutant strain Med15V76R/R84K, increased multidimensional stress tolerance and pyruvate production compared with that of S. cerevisiae with its native Med15. The Med15V76R/R84K could increase membrane related genes expression possibly by enhancing interaction with transcription factor to improve membrane physiological functions under stress conditions.
Collapse
|
12
|
Sun Y, Wu S, Fu X, Lai C, Guo D. De novo biosynthesis of τ-cadinol in engineered Escherichia coli. BIORESOUR BIOPROCESS 2022; 9:29. [PMID: 38647768 PMCID: PMC10991332 DOI: 10.1186/s40643-022-00521-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/08/2022] [Indexed: 11/10/2022] Open
Abstract
τ-Cadinol is a sesquiterpene that is widely used in perfume, fine chemicals and medicines industry. In this study, we established a biosynthetic pathway for the first time in engineered Escherichia coli for production of τ-cadinol from simple carbon sources. Subsequently, we further improved the τ-cadinol production to 35.9 ± 4.3 mg/L by optimizing biosynthetic pathway and overproduction of rate-limiting enzyme IdI. Finally, the titer was increased to 133.5 ± 11.2 mg/L with a two-phase organic overlay-culture medium system. This study shows an efficient method for the biosynthesis of τ-cadinol in E. coli with the heterologous hybrid MVA pathway.
Collapse
Affiliation(s)
- Yue Sun
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou, 341000, Jiangxi Province, China
| | - Shaoting Wu
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou, 341000, Jiangxi Province, China
| | - Xiao Fu
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou, 341000, Jiangxi Province, China
| | - Chongde Lai
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Daoyi Guo
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou, 341000, Jiangxi Province, China.
| |
Collapse
|
13
|
Yang R, Du Z, Qiu T, Sun J, Shen Y, Huang L. Discovery and Functional Characterization of a Diverse Diterpene Synthase Family in the Medicinal Herb Isodon lophanthoides Var. gerardiana. PLANT & CELL PHYSIOLOGY 2021; 62:1423-1435. [PMID: 34133748 DOI: 10.1093/pcp/pcab089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 06/12/2023]
Abstract
Isodon lophanthoides var. gerardiana (Lamiaceae), also named xihuangcao, is a traditional Chinese medicinal herb that exhibits a broad range of pharmacological activities. Abietane-type diterpenoids are the characteristic constituents of I. lophanthoides, yet their biosynthesis has not been elucidated. Although the aerial parts are the most commonly used organs of I. lophanthoides, metabolite profiling by gas chromatography-mass spectrometry showed the underground parts also contain large amounts of labdane diterpenoids including abietatriene, miltiradiene and ferruginol, which are distinct from the 13-hydroxy-8(14)-abietene detected in the aerial parts. Comparative transcriptome analysis of root and leaf samples identified a diverse diterpene synthase family including 6 copalyl diphosphate synthase (IlCPS1-6) and 5 kaurene synthase-like (IlKSL1-5). Here we report the functional characterization of six of these enzymes using yeast heterologous expression system. Both IlCPS1 and IlCPS3 synthesized (+)-copalyl diphosphate (CPP), in combination with IlKSL1 resulted in miltiradiene, precursor of abietane-type diterpenoids, while coupling with IlKSL5 led to the formation of hydroxylated diterpene scaffold nezukol. Expression profiling and phylogenetic analysis further support the distinct evolutionary relationship and spatial distribution of IlCPS1 and IlCPS3. IlCPS2 converted GGPP into labda-7,13E-dien-15-ol diphosphate. IlCPS6 was identified as ent-CPS, indicating a role in gibberellin metabolism. We further identified a single residue that determined the water addition of nezukol synthase IlKSL5. Substitution of alanine 513 with isoleucine completely altered the product outcome from hydroxylated nezukol to isopimara-7,15-diene. Together, these findings elucidated the early steps of bioactive abietane-type diterpenoid biosynthesis in I. lophanthoides and the catalytic mechanism of nezukol synthase.
Collapse
Affiliation(s)
- Ruikang Yang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, 12 Jichang Rd, Guangzhou 510405, China
| | - Zuying Du
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, 12 Jichang Rd, Guangzhou 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Ting Qiu
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, 12 Jichang Rd, Guangzhou 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jie Sun
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of biotechnology and bioengineering, Zhejiang University of Technology, 18 Chaowang Rd Hangzhou 310014, Zhejiang, China
| | - Yanting Shen
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, 232 Waihuan Rd, Guangzhou 510006, China
| | - Lili Huang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, 12 Jichang Rd, Guangzhou 510405, China
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, 232 Waihuan Rd, Guangzhou 510006, China
| |
Collapse
|
14
|
Mai J, Li W, Ledesma-Amaro R, Ji XJ. Engineering Plant Sesquiterpene Synthesis into Yeasts: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9498-9510. [PMID: 34376044 DOI: 10.1021/acs.jafc.1c03864] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sesquiterpenes are natural compounds composed of three isoprene units. They represent the largest class of terpene compounds found in plants, and many have remarkable biological activities. Furthermore, sesquiterpenes have broad applications in the flavor, pharmaceutical and biofuel industries due to their complex structures. With the development of metabolic engineering and synthetic biology, the production of different sesquiterpenes has been realized in various chassis microbes. The microbial production of sesquiterpenes provides a promising alternative to plant extraction and chemical synthesis, enabling us to meet the increasing market demand. In this review, we summarized the heterologous production of different plant sesquiterpenes using the eukaryotic yeasts Saccharomyces cerevisiae and Yarrowia lipolytica, followed by a discussion of common metabolic engineering strategies used in this field.
Collapse
Affiliation(s)
- Jie Mai
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Wenjuan Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| |
Collapse
|
15
|
Carsanba E, Pintado M, Oliveira C. Fermentation Strategies for Production of Pharmaceutical Terpenoids in Engineered Yeast. Pharmaceuticals (Basel) 2021; 14:295. [PMID: 33810302 PMCID: PMC8066412 DOI: 10.3390/ph14040295] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 02/08/2023] Open
Abstract
Terpenoids, also known as isoprenoids, are a broad and diverse class of plant natural products with significant industrial and pharmaceutical importance. Many of these natural products have antitumor, anti-inflammatory, antibacterial, antiviral, and antimalarial effects, support transdermal absorption, prevent and treat cardiovascular diseases, and have hypoglycemic activities. Production of these compounds are generally carried out through extraction from their natural sources or chemical synthesis. However, these processes are generally unsustainable, produce low yield, and result in wasting of substantial resources, most of them limited. Microbial production of terpenoids provides a sustainable and environment-friendly alternative. In recent years, the yeast Saccharomyces cerevisiae has become a suitable cell factory for industrial terpenoid biosynthesis due to developments in omics studies (genomics, transcriptomics, metabolomics, proteomics), and mathematical modeling. Besides that, fermentation development has a significant importance on achieving high titer, yield, and productivity (TYP) of these compounds. Up to now, there have been many studies and reviews reporting metabolic strategies for terpene biosynthesis. However, fermentation strategies have not been yet comprehensively discussed in the literature. This review summarizes recent studies of recombinant production of pharmaceutically important terpenoids by engineered yeast, S. cerevisiae, with special focus on fermentation strategies to increase TYP in order to meet industrial demands to feed the pharmaceutical market. Factors affecting recombinant terpenoids production are reviewed (strain design and fermentation parameters) and types of fermentation process (batch, fed-batch, and continuous) are discussed.
Collapse
Affiliation(s)
- Erdem Carsanba
- Amyris BioProducts Portugal, Unipessoal, Lda. Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
| | - Manuela Pintado
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
| | - Carla Oliveira
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
| |
Collapse
|
16
|
Li W, Yan X, Zhang Y, Liang D, Caiyin Q, Qiao J. Characterization of trans-Nerolidol Synthase from Celastrus angulatus Maxim and Production of trans-Nerolidol in Engineered Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2236-2244. [PMID: 33586967 DOI: 10.1021/acs.jafc.0c06084] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Volatile terpenoids are a large group of important secondary metabolites and possess many biological activities. The acyclic sesquiterpene trans-nerolidol is one of the typical representatives and widely used in cosmetics and agriculture. Here, the accumulation of volatile terpenes in different tissues of Celastrus angulatus was investigated, and two trans-nerolidol synthases, CaNES1 and CaNES2, were identified and characterized by in vitro enzymatic assays. Both genes are differentially transcribed in different tissues of C. angulatus. Next, we constructed a Saccharomyces cerevisiae cell factory to enable high-level production of trans-nerolidol. Glucose was the sole carbon source to sequentially control gene expression between the competitive squalene and trans-nerolidol pathways. Finally, the trans-nerolidol production of recombinant strain LWG003-CaNES2 was 7.01 g/L by fed-batch fermentation in a 5 L bioreactor. The results clarify volatile terpenoid biosynthesis in C. angulatus and provide a promising potential for industrial production of trans-nerolidol in S. cerevisiae.
Collapse
Affiliation(s)
- Weiguo Li
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| | - Xiaoguang Yan
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| | - Yuting Zhang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| | - Dongmei Liang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| | - Qinggele Caiyin
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| | - Jianjun Qiao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
17
|
Navale GR, Dharne MS, Shinde SS. Metabolic engineering and synthetic biology for isoprenoid production in Escherichia coli and Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2021; 105:457-475. [PMID: 33394155 DOI: 10.1007/s00253-020-11040-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/23/2020] [Accepted: 12/01/2020] [Indexed: 12/29/2022]
Abstract
Isoprenoids, often called terpenoids, are the most abundant and highly diverse family of natural organic compounds. In plants, they play a distinct role in the form of photosynthetic pigments, hormones, electron carrier, structural components of membrane, and defence. Many isoprenoids have useful applications in the pharmaceutical, nutraceutical, and chemical industries. They are synthesized by various isoprenoid synthase enzymes by several consecutive steps. Recent advancement in metabolic engineering and synthetic biology has enabled the production of these isoprenoids in the heterologous host systems like Escherichia coli and Saccharomyces cerevisiae. Both heterologous systems have been engineered for large-scale production of value-added isoprenoids. This review article will provide the detailed description of various approaches used for engineering of methyl-D-erythritol-4-phosphate (MEP) and mevalonate (MVA) pathway for synthesizing isoprene units (C5) and ultimate production of diverse isoprenoids. The review particularly highlighted the efforts taken for the production of C5-C20 isoprenoids by metabolic engineering techniques in E. coli and S. cerevisiae over a decade. The challenges and strategies are also discussed in detail for scale-up and engineering of isoprenoids in the heterologous host systems.Key points• Isoprenoids are beneficial and valuable natural products.• E. coli and S. cerevisiae are the promising host for isoprenoid biosynthesis.• Emerging techniques in synthetic biology enabled the improved production.• Need to expand the catalogue and scale-up of un-engineered isoprenoids. Metabolic engineering and synthetic biology for isoprenoid production in Escherichia coli and Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Govinda R Navale
- NCIM Resource Centre, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411 008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 001, India
| | - Mahesh S Dharne
- NCIM Resource Centre, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411 008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 001, India.
| | - Sandip S Shinde
- NCIM Resource Centre, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411 008, India. .,Department Industrial and Chemical Engineering, Institute of Chemical Technology Mumbai Marathwada Campus, Jalna, 431213, India.
| |
Collapse
|