1
|
Guo S, Liu S, Liu C, Wang Y, Gu D, Tian J, Yang Y. Biomimetic immobilization of α-glucosidase inspired by antibody-antigen specific recognition for catalytic preparation of 4-methylumbelliferone. Int J Biol Macromol 2024; 268:131697. [PMID: 38688333 DOI: 10.1016/j.ijbiomac.2024.131697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Immobilization technology plays an important role in enhancing enzyme stability and environmental adaptability. Despite its rapid development, this technology still encounters many challenges such as enzyme leakage, difficulties in large-scale implementation, and limited reusability. Drawing inspiration from natural paired molecules, this study aimed to establish a method for immobilized α-glucosidase using artificial antibody-antigen interaction. The proposed method consists of three main parts: synthesis of artificial antibodies, synthesis of artificial antigens, and assembly of the artificial antibody-antigen complex. The critical step in this method involves selecting a pair of structurally similar compounds: catechol as a template for preparing artificial antibodies and protocatechualdehyde for modifying the enzyme to create the artificial antigens. By utilizing the same functional groups in these compounds, specific recognition of the antigen by the artificial antibody can be achieved, thereby immobilizing the enzymes. The results demonstrated that the immobilization amount, specific activity, and enzyme activity of the immobilized α-glucosidase were 25.09 ± 0.10 mg/g, 5.71 ± 0.17 U/mgprotein and 143.25 ± 1.71 U/gcarrier, respectively. The immobilized α-glucosidase not only exhibited excellent reusability but also demonstrated remarkable performance in catalyzing the hydrolysis of 4-methylumbelliferyl-α-D-glucopyranoside.
Collapse
Affiliation(s)
- Shuang Guo
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Shuo Liu
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Chang Liu
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yi Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Dongyu Gu
- College of Marine Science and Environment, Dalian Ocean University, Dalian 116023, China.
| | - Jing Tian
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Yi Yang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
2
|
Zhu C, Mou M, Yang L, Jiang Z, Zheng M, Li Z, Hong T, Ni H, Li Q, Yang Y, Zhu Y. Enzymatic hydrolysates of κ-carrageenan by κ-carrageenase-CLEA immobilized on amine-modified ZIF-8 confer hypolipidemic activity in HepG2 cells. Int J Biol Macromol 2023; 252:126401. [PMID: 37597638 DOI: 10.1016/j.ijbiomac.2023.126401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
κ-Carrageenase can degrade κ-carrageenan to produce bioactive κ-carrageenan oligosaccharides (KCOs) that have potential applications in pharmaceutical, food, agricultural, and cosmetics industries. Immobilized enzymes gain their popularity due to their good reusability, enhanced stability, and tunability. In this study, the previously characterized catalytic domain of Pseudoalteromonas purpurea κ-carrageenase was covalently immobilized on the synthesized amine-modified zeolitic imidazolate framework-8 nanoparticles with the formation of cross-linked enzyme aggregates, and the immobilized κ-carrageenase was further characterized. The immobilized κ-carrageenase demonstrated excellent pH stability and good reusability, and exhibited higher optimal reaction temperature, better thermostability, and extended storage stability compared with the free enzyme. The KCOs produced by the immobilized κ-carrageenase could significantly decrease the TC, TG, and LDL-C levels in HepG2 cells, increase the HDL-C level in HepG2 cells, and reduce the free fatty acids level in Caco-2 cells. Biochemical assays showed that the KCOs could activate AMPK activity, increase the ratios of p-AMPK/AMPK and p-ACC/ACC, and downregulate the expression of the lipid metabolism related proteins including SREBP1 and HMGCR in the hyperlipidemic HepG2 cells. This study provides a novel and effective method for immobilization of κ-carrageenase, and the KCOs produced by the immobilized enzyme could be a potential therapeutic agent to prevent hyperlipidemia.
Collapse
Affiliation(s)
- Chunhua Zhu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Mingjing Mou
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Leilei Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Zedong Jiang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Mingjing Zheng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Zhipeng Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Tao Hong
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Hui Ni
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Xiamen Ocean Vocational College, Xiamen 361102, China
| | - Qingbiao Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Yuanfan Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China.
| | - Yanbing Zhu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China.
| |
Collapse
|
3
|
Luo ML, Chen H, Chen GY, Wang S, Wang Y, Yang FQ. Preparation of Alcohol Dehydrogenase-Zinc Phosphate Hybrid Nanoflowers through Biomimetic Mineralization and Its Application in the Inhibitor Screening. Molecules 2023; 28:5429. [PMID: 37513303 PMCID: PMC10386709 DOI: 10.3390/molecules28145429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
A biomimetic mineralization method was used in the facile and rapid preparation of nanoflowers for immobilizing alcohol dehydrogenase (ADH). The method mainly uses ADH as an organic component and zinc phosphate as an inorganic component to prepare flower-like ADH/Zn3(PO4)2 organic-inorganic hybrid nanoflowers (HNFs) with the high specific surface area through a self-assembly process. The synthesis conditions of the ADH HNFs were optimized and its morphology was characterized. Under the optimum enzymatic reaction conditions, the Michaelis-Menten constant (Km) of ADH HNFs (β-NAD+ as substrate) was measured to be 3.54 mM, and the half-maximal inhibitory concentration (IC50) of the positive control ranitidine (0.2-0.8 mM) was determined to be 0.49 mM. Subsequently, the inhibitory activity of natural medicine Penthorum chinense Pursh and nine small-molecule compounds on ADH was evaluated using ADH HNFs. The inhibition percentage of the aqueous extract of P. chinense is 57.9%. The vanillic acid, protocatechuic acid, gallic acid, and naringenin have obvious inhibitory effects on ADH, and their percentages of inhibition are 55.1%, 68.3%, 61.9%, and 75.5%, respectively. Moreover, molecular docking analysis was applied to explore the binding modes and sites of the four most active small-molecule compounds to ADH. The results of this study can broaden the application of immobilized enzymes through biomimetic mineralization, and provide a reference for the discovery of ADH inhibitors from natural products.
Collapse
Affiliation(s)
- Mao-Ling Luo
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Hua Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Guo-Ying Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| |
Collapse
|
4
|
Wan GZ, Ma XH, Jin L, Chen J. Fabrication of a Magnetic Porous Organic Polymer for α-Glucosidase Immobilization and Its Application in Inhibitor Screening. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5239-5249. [PMID: 37014629 DOI: 10.1021/acs.langmuir.2c02979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The technology based on immobilized enzymes was employed to screen the constituents inhibiting disease-related enzyme activity from traditional Chinese medicine, which is expected to become an important approach of innovative drug development. Herein, the Fe3O4@POP composite with a core-shell structure was constructed for the first time with Fe3O4 magnetic nanoparticles as the core, 1,3,5-tris (4-aminophenyl) benzene (TAPB) and 2,5-divinylterephthalaldehyde (DVA) as organic monomers, and used as the support for immobilizing α-glucosidase. Fe3O4@POP was characterized by transmission electron microscopy, energy-dispersive spectrometry, Fourier transform infrared, powder X-ray diffraction, X-ray photoelectron spectroscopy, and vibrating sample magnetometry. Fe3O4@POP exhibited a distinct core-shell structure and excellent magnetic response (45.2 emu g-1). α-Glucosidase was covalently immobilized on core-shell Fe3O4@POP magnetic nanoparticles using glutaraldehyde as the cross-linking agent. The immobilized α-glucosidase possessed improved pH stability and thermal stability as well as good storage stability and reusability. More importantly, the immobilized enzyme exhibited a lower Km value and enhanced affinity for the substrate than the free one. The immobilized α-glucosidase was subsequently used for inhibitor screening from 18 traditional Chinese medicines in combination with capillary electrophoresis analysis among which Rhodiola rosea exhibited the highest enzyme inhibitory activity. These positive results demonstrated that such magnetic POP-based core-shell nanoparticles were a promising carrier for enzyme immobilization and the screening strategy based on immobilized enzyme provided an effective way to rapidly explore the targeted active compounds from medicinal plants.
Collapse
Affiliation(s)
- Guang-Zhen Wan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xiao-Hui Ma
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Ling Jin
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Juan Chen
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
5
|
Wen N, Song PS, Ni L, Chen J. Tannic acid-aminopropyltriethoxysilane co-deposition modified polymer membrane for α-glucosidase immobilization. J Chromatogr A 2022; 1683:463550. [DOI: 10.1016/j.chroma.2022.463550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/24/2022] [Accepted: 09/30/2022] [Indexed: 11/25/2022]
|
6
|
Organic-inorganic hybrid nanoflowers: The known, the unknown, and the future. Adv Colloid Interface Sci 2022; 309:102780. [DOI: 10.1016/j.cis.2022.102780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/01/2022] [Accepted: 09/19/2022] [Indexed: 01/10/2023]
|
7
|
Chen Y, Liu P, Wu J, Yan W, Xie S, Sun X, Ye BC, Chu X. N-acylhomoserine lactonase-based hybrid nanoflowers: a novel and practical strategy to control plant bacterial diseases. J Nanobiotechnology 2022; 20:347. [PMID: 35883097 PMCID: PMC9327166 DOI: 10.1186/s12951-022-01557-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The disease caused by plant pathogenic bacteria in the production, transportation, and storage of many crops has brought huge losses to agricultural production. N-acylhomoserine lactonases (AHLases) can quench quorum-sensing (QS) by hydrolyzing acylhomoserine lactones (AHLs), which makes them the promising candidates for controlling infections of QS-dependent pathogenic bacteria. Although many AHLases have been isolated and considered as a potentially effective preventive and therapeutic agents for bacterial diseases, the intrinsically poor ambient stability has seriously restricted its application. RESULTS Herein, we showed that a spheroid enzyme-based hybrid nanoflower (EHNF), AhlX@Ni3(PO4)2, can be easily synthesized, and it exhibited 10 times AHL (3OC8-HSL) degradation activity than that with free AhlX (a thermostable AHL lactonase). In addition, it showed intriguing stability even at the working concentration, and retained ~ 100% activity after incubation at room temperature (25 °C) for 40 days and approximately 80% activity after incubation at 60 °C for 48 h. Furthermore, it exhibited better organic solvent tolerance and long-term stability in a complicated ecological environment than that of AhlX. To reduce the cost and streamline production processes, CSA@Ni3(PO4)2, which was assembled from the crude supernatants of AhlX and Ni3(PO4)2, was synthesized. Both AhlX@Ni3(PO4)2 and CSA@Ni3(PO4)2 efficiently attenuated pathogenic bacterial infection. CONCLUSIONS In this study, we have developed N-acylhomoserine lactonase-based hybrid nanoflowers as a novel and efficient biocontrol reagent with significant control effect, outstanding environmental adaptability and tolerance. It was expected to overcome the bottlenecks of poor stability and limited environmental tolerance that have existed for over two decades and pioneered the practical application of EHNFs in the field of biological control.
Collapse
Affiliation(s)
- Yan Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Pengfu Liu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Jiequn Wu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Wanqing Yan
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Saixue Xie
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Xuanrong Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Bang-Ce Ye
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China.
| | - Xiaohe Chu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
8
|
Gülmez C. Glucose Tolerance, Antiprotease Activity and Total Oxidant/Antioxidant Capacity Studies of β-Glucosidase Hybrid Nanoflower for Industrial Applications. Chem Biodivers 2022; 19:e202200170. [PMID: 35675565 DOI: 10.1002/cbdv.202200170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/27/2022] [Indexed: 11/09/2022]
Abstract
β-Glycosidases, which catalyse the hydrolysis of glycoside bonds, have a wide spectrum of industrial applications. However, the reaction product glucose inhibits the activities of many β-glucosidases. Consequently, the reduced catalytic activities of the enzyme limit the industrial applications of the enzymes. For that reason, the studies dealing with maintaining the activities of the relevant enzymes at high glucose concentrations are a great interest among the researchers. In this context, herein, protein-inorganic hybrid nanoflowers were synthesized using β-glucosidase and copper ion by fast sonication method for 10 min. After characterization of synthesized nanoflowers, pH/temperature studies, glucose tolerance, anti-protease activity, recyclability and total antioxidant and total oxidative capacity levels were estimated. Accordingly, the optimum pHs of free β-glucosidase and hybrid nanoflower (β-GNF) were found to be 6 and 5, respectively, and the optimum temperature values for both hybrid nanoflowers and free enzyme were 40 °C. β-GNF exhibited better activity than free enzyme in low acidic and alkaline environment and at high temperature. The nanoflower retained nearly all (99 %) of its initial activity at all glucose concentrations (0.01, 0.05 and 0.1 mg/mL), especially at pH 5 and 6. Also, β-GNF maintained more than 90 % of initial activity at 0.01 and 0.05 mg/mL glucose at pH 4 and 7. It also displayed about 96 % high residual activity after proteinase K treatment for 3 h at 37 °C, while that of the free β-glucosidase was about 87 %. The reusability studies showed that β-GNF only lost ∼28 % of its initial activities at the end of five cycles. The hybrid nanoflowers at 5 mg/mL concentration exhibited the high total antioxidant capacity. In addition, low total oxidant capacity and oxidative stress index levels were recorded at the same concentration of the hybrid nanoflower. The findings of the present study revealed that β-GNFs may be evaluated as a candidate for various industrial applications due to its high glucose tolerance, anti-protease activity, reusability and resistance to low acidic/alkaline environment and high temperature.
Collapse
Affiliation(s)
- Canan Gülmez
- Department of Pharmacy Services, Tuzluca Vocational High School, Igdir University, 76000, Igdir, Türkiye
| |
Collapse
|
9
|
Zhao D, Pu Z, Su Q, Zhang Y, Sun W, Bao Y. Self-assembled κ-carrageenase-inorganic hybrid nanoflowers exerting high catalytic efficiency with stable and recyclable properties. Enzyme Microb Technol 2021; 153:109957. [PMID: 34847438 DOI: 10.1016/j.enzmictec.2021.109957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/18/2021] [Accepted: 11/21/2021] [Indexed: 01/14/2023]
Abstract
κ-Carrageenan oligosaccharides from κ-carrageenan hydrolysis are important biochemicals with more bioactivity. Enzyme engineering plays a key role in improving κ-carrageenase catalytic efficiency for production of κ-carrageenan oligosaccharides. Effect of metal ions on enzyme activity, especially stability and efficiency, is main factor in catalytic process, but metal ions addition leads to gelation of κ-carrageenan solution. In this study, molecular dynamics simulation was used to explore the interaction between κ-carrageenase CgkPZ and Ca2+, and Ca2+ bonded to D164 and E167 in the catalytic center resulting in the catalytic efficiency increase. Circular dichroism analysis indicated that the secondary structure of κ-carrageenase could change in the presence of Ca2+. Therefore, a novel self-assembly κ-carrageenase-inorganic hybrid nanoflowers CaNF@CgkPZ was synthesized and systematically characterized. The catalytic efficiency (kcat/Km) of CaNF@CgkPZ was 382.1 mL·mg-1·s-1, increased by 292% compared with free κ-carrageenase. Notably, the enzyme activity of CaNF@CgkPZ was not reduced significantly after 19 cycles use, and 70-100% relative activity was still retained when stored at 4-25 ℃ for 15 days. This work provides an efficient approach for κ-carrageenase immobilization with good storage stability, reusability and enhanced catalytic efficiency, which is of great significance in practical applications.
Collapse
Affiliation(s)
- Dongying Zhao
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China; Ningbo institute, Dalian University of Technology, Ningbo 315016, China
| | - Zhongji Pu
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
| | - Qiao Su
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
| | - Yue Zhang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Wenhui Sun
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Yongming Bao
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China; Ningbo institute, Dalian University of Technology, Ningbo 315016, China; School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China.
| |
Collapse
|
10
|
Tian T, Chen GY, Zhang H, Yang FQ. Personal Glucose Meter for α-Glucosidase Inhibitor Screening Based on the Hydrolysis of Maltose. Molecules 2021; 26:molecules26154638. [PMID: 34361791 PMCID: PMC8348101 DOI: 10.3390/molecules26154638] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 01/14/2023] Open
Abstract
As a key enzyme regulating postprandial blood glucose, α-Glucosidase is considered to be an effective target for the treatment of diabetes mellitus. In this study, a simple, rapid, and effective method for enzyme inhibitors screening assay was established based on α-glucosidase catalyzes reactions in a personal glucose meter (PGM). α-glucosidase catalyzes the hydrolysis of maltose to produce glucose, which triggers the reduction of ferricyanide (K3[Fe(CN)6]) to ferrocyanide (K4[Fe(CN)6]) and generates the PGM detectable signals. When the α-glucosidase inhibitor (such as acarbose) is added, the yield of glucose and the readout of PGM decreased accordingly. This method can achieve the direct determination of α-glucosidase activity by the PGM as simple as the blood glucose tests. Under the optimal experimental conditions, the developed method was applied to evaluate the inhibitory activity of thirty-four small-molecule compounds and eighteen medicinal plants extracts on α-glucosidase. The results exhibit that lithospermic acid (52.5 ± 3.0%) and protocatechualdehyde (36.8 ± 2.8%) have higher inhibitory activity than that of positive control acarbose (31.5 ± 2.5%) at the same final concentration of 5.0 mM. Besides, the lemon extract has a good inhibitory effect on α-glucosidase with a percentage of inhibition of 43.3 ± 3.5%. Finally, the binding sites and modes of four active small-molecule compounds to α-glucosidase were investigated by molecular docking analysis. These results indicate that the PGM method is feasible to screening inhibitors from natural products with simple and rapid operations.
Collapse
Affiliation(s)
- Tao Tian
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China; (T.T.); (G.-Y.C.)
| | - Guo-Ying Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China; (T.T.); (G.-Y.C.)
| | - Hao Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China; (T.T.); (G.-Y.C.)
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
- Correspondence: (H.Z.); (F.-Q.Y.); Tel.: +86-138-9621-7134 (H.Z.); +86-136-1765-0637 (F.-Q.Y.)
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China; (T.T.); (G.-Y.C.)
- Correspondence: (H.Z.); (F.-Q.Y.); Tel.: +86-138-9621-7134 (H.Z.); +86-136-1765-0637 (F.-Q.Y.)
| |
Collapse
|