1
|
Bustamante MCC, Costa CLL, Esperança MN, Mazziero VT, Cerri MO, Badino AC. Effect of impeller type on cellular morphology and production of clavulanic acid by Streptomyces clavuligerus. Braz J Microbiol 2024; 55:1167-1177. [PMID: 38557863 PMCID: PMC11153386 DOI: 10.1007/s42770-024-01306-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/10/2024] [Indexed: 04/04/2024] Open
Abstract
It is essential to evaluate the effects of operating conditions in submerged cultures of filamentous microorganisms. In particular, the impeller type influences the flow pattern, power consumption, and energy dissipation, leading to differences in the hydrodynamic environment that affect the morphology of the microorganism. This work investigated the effect of different impeller types, namely the Rushton turbine (RT-RT) and Elephant Ear impellers in up-pumping (EEUP) and down-pumping (EEDP) modes, on cellular morphology and clavulanic acid (CA) production by Streptomyces clavuligerus in a stirred-tank bioreactor. At 800 rpm and 0.5 vvm, the cultivations performed using RT-RT and EEUP impellers provided higher shear conditions and oxygen transfer rates than those observed with EEDP. These conditions resulted in higher clavulanic acid production using RT-RT (380.7 mg/L) and EEUP (453.3 mg/L) impellers, compared to EEDP (196.6 mg/L). Although the maximum CA concentration exhibited the same order of magnitude for RT-RT and EEUP impellers, the latter presented 40% of the specific power consumption (4.9 kW/m3) compared to the classical RT-RT (12.0 kW/m3). The specific energy for CA production ( E CA ), defined as the energy cost to produce 1 mg of CA, was 3.5 times lower using the EEUP impeller (1.91 kJ/mgCA) when compared to RT-RT (5.91 kJ/mgCA). Besides, the specific energy for O2 transfer ( E O 2 ), the energy required to transfer 1 mmol of O2, was 2.3 times lower comparing the EEUP impeller (3.28 kJ/mmolO2) to RT-RT (7.65 kJ/mmolO2). The results demonstrated the importance of choosing the most suitable impeller configuration in conventional bioreactors to manufacture bioproducts.
Collapse
Affiliation(s)
- M C C Bustamante
- Department of Chemical Engineering, Federal University of São Carlos, C.P. 676, São Carlos, SP, 13565-905, Brazil
| | - C L L Costa
- Department of Chemical Engineering, Federal University of São Carlos, C.P. 676, São Carlos, SP, 13565-905, Brazil
| | - M N Esperança
- Federal Institute of Education, Science and Technology of São Paulo, Campus Capivari, Capivari, SP, 13360-000, Brazil
| | - V T Mazziero
- Department of Bioprocesses Engineering and Biotechnology, Faculty of Pharmaceutical Sciences, São Paulo State University, Araraquara, SP, 14801-902, Brazil
| | - M O Cerri
- Department of Bioprocesses Engineering and Biotechnology, Faculty of Pharmaceutical Sciences, São Paulo State University, Araraquara, SP, 14801-902, Brazil
| | - Alberto C Badino
- Department of Chemical Engineering, Federal University of São Carlos, C.P. 676, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
2
|
Pucci EFQ, Buffo MM, Del Bianco Sousa M, Tardioli PW, Badino AC. An innovative multi-enzymatic system for gluconic acid production from starch using Aspergillus niger whole-cells. Enzyme Microb Technol 2023; 171:110309. [PMID: 37690395 DOI: 10.1016/j.enzmictec.2023.110309] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/12/2023]
Abstract
The use of multi-enzymatic systems for the industrial production of chemical compounds is currently considered an important green tool in synthetic organic chemistry. Gluconic acid is a multi-functional organic acid widely used in the chemical, pharmaceutical, food, textile, and construction industries. Its industrial production from glucose by fermentation using Aspergillus niger has drawbacks including high costs related to cell growth and maintenance of cell viability. This study presents an innovative one-step multi-enzymatic system for gluconic acid production from starch using Aspergillus niger whole-cells in association with amylolytic enzymes. Using soluble starch as substrate, the following results were achieved for 96 h of reaction: 134.5 ± 4.3 g/L gluconic acid concentration, 98.2 ± 1.3 % gluconic acid yield, and 44.8 ± 1.4 gGA/gwhole-cells biocatalyst yield. Although the process has been developed using starch as raw material, the approach is feasible for any substrate or residue that can be hydrolyzed to glucose.
Collapse
Affiliation(s)
| | - Mariane Molina Buffo
- Laboratory of Fermentation Processes, Department of Chemical Engineering, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Marina Del Bianco Sousa
- Laboratory of Fermentation Processes, Department of Chemical Engineering, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Paulo Waldir Tardioli
- Graduate Program in Chemical Engineering, Federal University of São Carlos, São Carlos, SP, Brazil; Laboratory of Enzymatic Processes, Department of Chemical Engineering, Federal University of São Carlos, São Carlos, SP, Brazil.
| | - Alberto Colli Badino
- Graduate Program in Chemical Engineering, Federal University of São Carlos, São Carlos, SP, Brazil; Laboratory of Fermentation Processes, Department of Chemical Engineering, Federal University of São Carlos, São Carlos, SP, Brazil.
| |
Collapse
|
3
|
Kheirkhah T, Neubauer P, Junne S. Controlling Aspergillus niger morphology in a low shear-force environment in a rocking-motion bioreactor. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
4
|
Michelin M, Ximenes E, M Polizeli MDLT, Ladisch MR. Inhibition of enzyme hydrolysis of cellulose by phenols from hydrothermally pretreated sugarcane straw. Enzyme Microb Technol 2023; 166:110227. [PMID: 36931149 DOI: 10.1016/j.enzmictec.2023.110227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/22/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023]
Abstract
Relatively few studies have addressed the characterization of sugarcane straw (SCS) for production of fermentable sugars through enzyme hydrolysis. Straw is a major co-product of the sugarcane harvest in Brazil that has potential to sustainably increase cellulosic feedstocks in Brazil by 50%. Pretreatment of 10% w/v straw with liquid hot water (LHW) at 180 °C for 50 min (severity, So, of 4.05), solubilizes hemicellulose, preserves glucan, and generates 4.49 g/L soluble phenolic compounds in the resulting liquid. Extracts from washing pretreated solids with excess hot water followed by acetone resulted in 1.10 and 0.83 g/L phenolics, respectively. Acetone-derived extracts were more inhibitory and decreased glucose yield for enzyme hydrolysis of Solka Floc (a lignin-free cellulose) by 42%. In comparison, pretreated straw washed with hot water or acetone was readily hydrolyzed to 92% and 97% by cellulase enzyme. Hydrothermally treated SCS has the potential to provide a valuable and added source of fermentable sugars suitable for bioprocessing into biofuels and bioproducts when cellulase enzyme inhibitors are removed after pretreatment.
Collapse
Affiliation(s)
- Michele Michelin
- Laboratory of Renewable Resources Engineering, Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907-2032, USA; Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil; Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Eduardo Ximenes
- Department of Environment and Occupational Health, School of Public Health, Innovation Center, Indiana University, Bloomington, IN 47408, USA
| | - Maria de Lourdes T M Polizeli
- Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | - Michael R Ladisch
- Laboratory of Renewable Resources Engineering, Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907-2032, USA.
| |
Collapse
|
5
|
Gou Z, Li J, He F, Bamao Z, Li Z, Xu T. Screening of a high-yield strain of avermectin B 1a by colony analysis in situ. INTERNATIONAL MICROBIOLOGY : THE OFFICIAL JOURNAL OF THE SPANISH SOCIETY FOR MICROBIOLOGY 2023; 26:123-133. [PMID: 36178644 DOI: 10.1007/s10123-022-00279-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 08/21/2022] [Accepted: 09/19/2022] [Indexed: 01/06/2023]
Abstract
Avermectin, an agricultural antibiotic, is widely used as an agricultural insecticide and an important lead compound of antibiotics. It is manufactured by Streptomyces avermitilis through fermentation. Manufacturers pay special attention to screening for strains with high fermentation capacity based on morphological properties of the colony and by the result of shake flask fermentation. These traditional screening methods are time-consuming and labor-intensive and require specialized equipment. Moreover, evaluation of colony appearance is highly subjective. To improve and accelerate the screening process, we developed a rapid in situ screening method. Forty-four strains isolated naturally from the spores of industrial high-yielding strains were studied. The data show that the colony fermentation titer is highly correlated with the yield from the shake flask fermentation of avermectin, and the Pearson's R is 0.990. The total titer of avermectins by shake flask fermentation is also highly correlated with the B1a titer (Pearson's R is 0.994). This result also shows that strains can be quickly screened by analyzing the colony titer. Pigment rings of the colonies that appeared after growing and maturing on the new medium plate were analyzed. The chosen colonies were directly marked and punched and then extracted with methanol. The fermentation ability can be evaluated by measuring the absorbance at 245 nm. This methodology can be applied in both natural breeding and mutation breeding conditions. By continuously breeding from 2008 to 2020, the flask titer of avermectin B1a increased from 4582 ± 483 to 9197 ± 1134 μg/mL.
Collapse
Affiliation(s)
- Zhongxuan Gou
- Jiangsu Food & Pharmaceutical Science College, Huaian, 223003, Jiangsu, China. .,Hebei Veyong Biochemical Co., LTD, Shijiazhuang City, Hebei, 050011, China.
| | - Junhua Li
- Hebei Veyong Biochemical Co., LTD, Shijiazhuang City, Hebei, 050011, China
| | - Feng He
- Jiangsu Food & Pharmaceutical Science College, Huaian, 223003, Jiangsu, China
| | - Zhaxi Bamao
- Jiangsu Food & Pharmaceutical Science College, Huaian, 223003, Jiangsu, China
| | - Zixuan Li
- Jiangsu Food & Pharmaceutical Science College, Huaian, 223003, Jiangsu, China
| | - Tingyu Xu
- Jiangsu Food & Pharmaceutical Science College, Huaian, 223003, Jiangsu, China.,Hebei Veyong Biochemical Co., LTD, Shijiazhuang City, Hebei, 050011, China
| |
Collapse
|