1
|
Liu H, Guan S, Wang P, Dong X. Super Tough Anti-freezing and Antibacterial Hydrogel With Multi-crosslinked Network for Flexible Strain Sensor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2407870. [PMID: 39905917 DOI: 10.1002/smll.202407870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/26/2024] [Indexed: 02/06/2025]
Abstract
Addressing the diverse environmental demands for electronic material performance, the design of a multifunctional ionic conductive hydrogel with mechanical flexibility, anti-freezing capability, and antibacterial characteristics represents an optimal solution. Leveraging the Dead Sea effect and the strong hydrogen bonding, this study exploits the CaCl2 and the abundant hydroxyl groups in phytic acid (PA) to induce chain entanglements, thereby constructing a complex, multi-crosslinked network. Furthermore, PA and ternary solvent systems (CaCl2/Glycerol/H2O) synergistically impart excellent mechanical strength, toughness (with tensile strength of 8.93 MPa, elongation at break of 859.93%, and toughness of 39.92 MJ m-3), high electrical conductivity, antifreeze capability, antibacterial properties, and high strain sensitivity (gauge factor up to 2.10) to the hydrogels. Remarkably, the hydrogel structure maintains stability even after undergoing 6000 loading-unloading cycles, demonstrating its outstanding fatigue resistance. Upon receiving external stimuli, the hydrogel exhibits a response time of 126 ms, making it ideal for the dynamic monitoring of human motion signals. This study offers novel insight into the potential application of ionic conductive hydrogels as flexible sensors in challenging environments.
Collapse
Affiliation(s)
- Huimin Liu
- School of Materials Science and Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Shiqiang Guan
- School of Materials Science and Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Pengwei Wang
- School of Materials Science and Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Xufeng Dong
- School of Materials Science and Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
2
|
Sun L, Zhang L, Han Q, Feng L. Prolonged Microcystis restraint through allelochemicals sustained-release microspheres regulated by carbon material (CM-AC@SM): Optimal formulation, characterization, effects and synergistic inhibition mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175345. [PMID: 39117204 DOI: 10.1016/j.scitotenv.2024.175345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
The Microcystis blooms have caused serious damage to aquatic ecosystems. Microspheres containing allelochemicals with sustained-release properties have the potential to function as a cost-effective and environmentally friendly algaecide against M. aeruginosa. In the current investigation, we successfully optimized the synthesis of allelochemicals sustained-release microspheres regulated by carbon material (CM-AC@SM), which demonstrated a high embedding rate (90.17 %) and loading rate (0.65 %), with an accumulative release rate of 53.27 % on day 30. To investigate the sustained-release mechanism of CM-AC@SM, the sustained-release process of allelochemicals was determined using the Folin-Phenol method and the immersion behavior of the CM-AC@SM was characterized through SEM and XPS. Results showed that allelochemicals were released in the delayed-dissolution mode. In addition, to elucidate the synergistic mechanism of CM-AC@SM towards the inhibition of M. aeruginosa, this study comprehensively assessed the effects of allelochemicals, carbon material and CM-AC@SM on the morphology, antioxidant system activity and photosynthetic activity of M. aeruginosa. The findings indicated that allelochemicals and carbon material induced intracellular protein and nucleic acid leakage by increasing cell membrane permeability, disrupted the extracellular and intracellular morphology of algae, triggered peroxidative damage and restrained antioxidant system activity by stimulating the generation of reactive oxygen species. Simultaneously, the activity of photosystem II was inhibited by allelochemicals and carbon material, substantiated by the reduction in Fv/Fo and Fv/Fm ratios. Hence, CM-AC@SM shows promise in inhibiting M. aeruginosa, offering an efficient approach for the future large-scale control of harmful algal blooms (HABs).
Collapse
Affiliation(s)
- Lei Sun
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Ecoremediation, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Liqiu Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Ecoremediation, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Qi Han
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Ecoremediation, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Li Feng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Ecoremediation, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
3
|
Akdoğan D, Peksel A. Immobilization and characterization of β-galactosidase from Aspergillus oryzae in polyvinyl alcohol hydrogels. Biotechnol Appl Biochem 2024. [PMID: 39491541 DOI: 10.1002/bab.2687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
One of the main goals of contemporary biotechnology has been the development of novel immobilized enzyme formulations. In the present study, the industrially important β-galactosidase was trapped in a polyvinyl alcohol (PVA) gel to immobilize it. The optimization of immobilization method and characterization of the immobilized enzyme were studied. The results were compared with free enzymes. The results indicate that the optimal temperature range for the enzyme to be at following immobilization is between 40°C and 50°C. At pH 7, the optimal pH, the activity increased, the Vmax value increased from 1.936 to 2.495 U mg‒1, and the Km value decreased from 4.861 to 0.982 mM. Depending on how stable the immobilized enzyme when stored, β-galactosidases immobilized on PVA gels showed 52.87% activity at the end of the seventh week and 58.86% activity at the end of the fifth week. Their initial activity subsided after three reuses. The final result was 66%. Therefore, one may argue that it increases the catalytic effect of the enzyme. As a result, it has been found that immobilized β-galactosidase has more potent enzymatic properties than free β-galactosidase, which may make it more advantageous for industrial processes. Further studies could delve deeper into the mechanistic aspects of the immobilization process in an effort to improve optimization and tailor the immobilized enzyme to specific industrial needs.
Collapse
Affiliation(s)
- Doruk Akdoğan
- Department of Chemistry, Faculty of Arts and Science, Yildiz Technical University, Istanbul, Turkey
- Department of Pharmacy Services, Health Services Vocational School, Istanbul Nisantasi University, Sariyer, Turkey
| | - Ayşegül Peksel
- Department of Chemistry, Faculty of Arts and Science, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
4
|
Ren Y, Wang Q, Xu W, Yang M, Guo W, He S, Liu W. Alginate-based hydrogels mediated biomedical applications: A review. Int J Biol Macromol 2024; 279:135019. [PMID: 39182869 DOI: 10.1016/j.ijbiomac.2024.135019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
With the development in the field of biomaterials, research on alternative biocompatible materials has been initiated, and alginate in polysaccharides has become one of the research hotspots due to its advantages of biocompatibility, biodegradability and low cost. In recent years, with the further understanding of microscopic molecular structure and properties of alginate, various physicochemical methods of cross-linking strategies, as well as organic and inorganic materials, have led to the development of different properties of alginate hydrogels for greatly expanded applications. In view of the potential application prospects of alginate-based hydrogels, this paper reviews the properties and preparation of alginate-based hydrogels and their major achievements in delivery carrier, dressings, tissue engineering and other applications are also summarized. In addition, the combination of alginate-based hydrogel and new technology such as 3D printing are also involved, which will contribute to further research and exploration.
Collapse
Affiliation(s)
- Yazhen Ren
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Qiang Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Wanlin Xu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
| | - Mingcheng Yang
- Henan Academy of Sciences Isotope Institute Co., Ltd.7 Songshan South Road, Zhengzhou 450015, People's Republic of China
| | - Wenhui Guo
- Henan Academy of Sciences Isotope Institute Co., Ltd.7 Songshan South Road, Zhengzhou 450015, People's Republic of China
| | - Suqin He
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Wentao Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
| |
Collapse
|
5
|
Liu X, Li X, Xie Z, Zhou X, Chen L, Qiu C, Lu C, Jin Z, Long J. Co-immobilization of β-agarase and α-agarase for degradation of agarose to prepare bioactive 3,6-anhydro- L-galactose. Int J Biol Macromol 2024; 277:133960. [PMID: 39029832 DOI: 10.1016/j.ijbiomac.2024.133960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/29/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Agarose from biomass can be used to synthesize the rare sugar 3,6-anhydro-L-galactose (L-AHG), and the new synthesis route and functional properties of L-AHG have always been the focus of research. Here we developed a novel method to co-immobilize Aga50D and BpGH117 onto streptavidin-coated magnetic nanoparticles and achieved the conversion of agarose to bioactive L-AHG in one pot. Results showed that enzymes were successfully immobilized on the carrier. The activity of co-immobilized enzymes was 2.5-fold higher than that of single immobilized enzymes. Compared with free enzymes, co-immobilized enzymes exhibited enhanced thermal stability. The co-immobilized enzymes retained 79.45 % relative activity at 40 °C for 3 h, while the free enzymes only possessed 21.40 % residual activity. After eight cycles, the co-immobilized enzymes still retained 73.47 % of the initial activity. After silica gel chromatography, the purity of L-AHG obtained by co-immobilized enzymes hydrolysis reached 83.02 %. Furthermore, bioactivity experiments demonstrated that L-AHG displayed better antioxidant and antibacterial effects than neoagarobiose. L-AHG had broad-spectrum antibacterial activity, while neoagarobiose and D-galactose did not show an obvious antibacterial effect. This study provides a feasible method for the production of L-AHG by a co-immobilized multi-enzyme system and confirms that L-AHG plays a key role in the bioactivity of neoagarobiose.
Collapse
Affiliation(s)
- Xuewu Liu
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Xingfei Li
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Zhengjun Xie
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Xing Zhou
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Long Chen
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Chao Qiu
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Cheng Lu
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Bioengineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zhengyu Jin
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Jie Long
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
6
|
Siar EH, Abellanas-Perez P, Rocha-Martin J, Fernandez-Lafuente R. Support Enzyme Loading Influences the Effect of Aldehyde Dextran Modification on the Specificity of Immobilized Ficin for Large Proteins. Molecules 2024; 29:3674. [PMID: 39125078 PMCID: PMC11314007 DOI: 10.3390/molecules29153674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
It has been reported that the modification of immobilized glyoxyl-ficin with aldehyde dextran can promote steric hindrances that greatly reduce the activity of the immobilized protease against hemoglobin, while the protease still maintained a reasonable level of activity against casein. In this paper, we studied if this effect may be different depending on the amount of ficin loaded on the support. For this purpose, both the moderately loaded and the overloaded glyoxyl-ficin biocatalysts were prepared and modified with aldehyde dextran. While the moderately loaded biocatalyst had a significantly reduced activity, mainly against hemoglobin, the activity of the overloaded biocatalyst was almost maintained. This suggests that aldehyde dextran was able to modify areas of the moderately loaded enzyme that were not available when the enzyme was overloaded. This modification promoted a significant increase in biocatalyst stability for both biocatalysts, but the stability was higher for the overloaded biocatalyst (perhaps due to a combination of inter- and intramolecular crosslinking).
Collapse
Affiliation(s)
- El Hocine Siar
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, 28049 Madrid, Spain; (E.H.S.); (P.A.-P.)
- Agri-Food Engineering Laboratory (GENIAAL), Institute of Food, Nutrition and Agri-Food Technologies (INATAA), University of Brothers Mentouri Constantine 1, Constantine 25017, Algeria
| | - Pedro Abellanas-Perez
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, 28049 Madrid, Spain; (E.H.S.); (P.A.-P.)
| | - Javier Rocha-Martin
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, José Antonio Novais 12, 28040 Madrid, Spain
| | | |
Collapse
|
7
|
Liu X, Li X, Xie Z, Zhou X, Chen L, Qiu C, Lu C, Jin Z, Long J. Comparative study on different immobilization sites of immobilized β-agarase based on the biotin/streptavidin system. Int J Biol Macromol 2024; 261:129807. [PMID: 38290635 DOI: 10.1016/j.ijbiomac.2024.129807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/01/2024]
Abstract
β-Agarase was biotinylated and immobilized onto streptavidin-conjugated magnetic nanoparticles to provide insights into the effect of immobilization sites on β-agarase immobilization. Results showed that, compared with free enzyme, the stability of prepared immobilized β-agarases through amino or carboxyl activation were both significantly improved. However, the amino-activated immobilized β-agarase showed higher thermostability and catalytic efficiency than the carboxyl-activated immobilized β-agarase. The relative activity of the former was 65.00 % after incubation at 50 °C for 1 h, which was 1.77-fold higher than that of the latter. Additionally, amino-activated immobilization increased the affinity of the enzyme to the substrate, and its maximum reaction rate (0.68 μmol/min) was superior to that of carboxyl-activated immobilization (0.53 μmol/min). The visualization results showed that the catalytic site of β-agarase after carboxyl-activated immobilization was more susceptible to the immobilization process, and the orientation of the enzyme may also hinder substrate binding and product release. These results suggest that by pre-selecting appropriate activation sites and enzyme orientation, immobilized enzymes with higher catalytic activity and stability can be obtained, making them more suitable for the application of continuous production.
Collapse
Affiliation(s)
- Xuewu Liu
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Xingfei Li
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Zhengjun Xie
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Xing Zhou
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Long Chen
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Chao Qiu
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Cheng Lu
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Bioengineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zhengyu Jin
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Jie Long
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
8
|
Santos MPF, Ferreira MA, Junior ECS, Bonomo RCF, Veloso CM. Functionalized activated carbon as support for trypsin immobilization and its application in casein hydrolysis. Bioprocess Biosyst Eng 2023; 46:1651-1664. [PMID: 37728765 DOI: 10.1007/s00449-023-02927-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023]
Abstract
This study aimed to immobilize trypsin on activated carbon submitted to different surface modifications and its application in casein hydrolysis. With the aim of determining which support can promote better maintenance of the immobilized enzyme. Results showed that pH 5.0 was obtained as optimal for immobilization and pH 9.0 for the casein hydrolysis reaction for activated carbon and glutaraldehyde functionalized carbon. Among the supports used, activated carbon modified with iron ions in the presence of a chelating agent was the one that showed best results, under the conditions evaluated in this study. Presenting an immobilization yield of 95.15% and a hydrolytic activity of 4.11 U, same as soluble enzyme (3.76 U). This derivative kept its activity stable at temperatures above 40 °C for1 h and when stored for 30 days at 5 °C. Furthermore, it was effective for more than 6 reuse cycles (under the same conditions as the 1st cycle). In general, immobilization of trypsin on metallized activated carbon can be an alternative to biocatalysis, highlighting the advantages of protease immobilization.
Collapse
Affiliation(s)
- Mateus P F Santos
- Process Engineering Laboratory, State University of Southwest Bahia, BR 415, km 04, s/n, Itapetinga, BA, 45700-000, Brazil
| | - Matheus A Ferreira
- Graduate Program in Agronomy, State University of Southwest Bahia, Estrada Bem Querer, km-04 s/n, Vitória da Conquista, BA, 45083-900, Brazil
| | - Evaldo C S Junior
- Process Engineering Laboratory, State University of Southwest Bahia, BR 415, km 04, s/n, Itapetinga, BA, 45700-000, Brazil
| | - Renata C F Bonomo
- Process Engineering Laboratory, State University of Southwest Bahia, BR 415, km 04, s/n, Itapetinga, BA, 45700-000, Brazil
| | - Cristiane M Veloso
- Process Engineering Laboratory, State University of Southwest Bahia, BR 415, km 04, s/n, Itapetinga, BA, 45700-000, Brazil.
| |
Collapse
|
9
|
Liu X, Li X, Bai Y, Zhou X, Chen L, Qiu C, Lu C, Jin Z, Long J, Xie Z. Enhanced Stability of β-Agarase Immobilized on Streptavidin-Coated Fe 3O 4 Nanoparticles: Effect of Biotin Linker Length. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xuewu Liu
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi214122, China
| | - Xingfei Li
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi214122, China
| | - Yuxiang Bai
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
| | - Xing Zhou
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
| | - Long Chen
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
| | - Chao Qiu
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
| | - Cheng Lu
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- School of Bioengineering, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
| | - Zhengyu Jin
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi214122, China
| | - Jie Long
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi214122, China
| | - Zhengjun Xie
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi214122, China
| |
Collapse
|
10
|
The incorporation of polypyrrole (PPy) in CS/PVA composite films to enhance the structural, optical, and the electrical conductivity. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04611-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
AbstractUsing the solution casting method, a blend of polyvinyl alcohol/chitosan (PVA/Cs) blend was prepared with different amounts of polypyrrole (PPy) to enhance the structural and electrical conductivity of the films. The miscibility and interaction between PVA/Cs were confirmed by FT-IR measurements by shifting and disappearing some bands suggesting that the PVA functional group interacted with every other functional group on the Cs side chain. For PVA/Cs/PPy, some band intensities varied, indicating the interaction between PPy and PVA/Cs. XRD showed that the addition of PPy to the blend leads to a noticeable decrease in the intensity of the diffraction peak at 2θ = 20.0° confirming the interactions have occurred between the PVA/Cs mixture and PPy. The UV–visible spectra indicate that increasing the amounts of PPy leads to a dramatic decrease in the energy band gap and an increase in the Urbach energy due to the creation of new energy levels that emerged between conduction and valance bands. After PPy was introduced, the polaron and bipolaron transition peaks at 416, 465, and 560 nm become apparent in the PL spectrum. The dielectric and the electrical properties were reported. The values of ε′ and ε′′ were stronger at low frequencies confirming the possibilities of interface polarization processes. The tan δ behavior diagrams have exhibited one peak trend in all samples shift toward higher frequencies as the temperature and PPy rise. The presence of the peaks was explained based on the electrical conductivity mechanism and dielectric behavior. The Cole–Cole plot displays a half one semicircle shape that explains the absence of contact effects. This semicircle expands as both temperature and PPy increase.
Collapse
|
11
|
Fan G, Li X, Lin J, Wu X, Zhang L, Wu J, Wang Y. Efficient photocatalytic inactivation of Microcystis aeruginosa via self-floating Ag3VO4/BiVO4 hydrogel under visible light. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|