1
|
Mainou E, Ribeiro RM, Conway JM. Modeling dynamics of acute HIV infection incorporating density-dependent cell death and multiplicity of infection. PLoS Comput Biol 2024; 20:e1012129. [PMID: 38848426 PMCID: PMC11189221 DOI: 10.1371/journal.pcbi.1012129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 06/20/2024] [Accepted: 05/02/2024] [Indexed: 06/09/2024] Open
Abstract
Understanding the dynamics of acute HIV infection can offer valuable insights into the early stages of viral behavior, potentially helping uncover various aspects of HIV pathogenesis. The standard viral dynamics model explains HIV viral dynamics during acute infection reasonably well. However, the model makes simplifying assumptions, neglecting some aspects of HIV infection. For instance, in the standard model, target cells are infected by a single HIV virion. Yet, cellular multiplicity of infection (MOI) may have considerable effects in pathogenesis and viral evolution. Further, when using the standard model, we take constant infected cell death rates, simplifying the dynamic immune responses. Here, we use four models-1) the standard viral dynamics model, 2) an alternate model incorporating cellular MOI, 3) a model assuming density-dependent death rate of infected cells and 4) a model combining (2) and (3)-to investigate acute infection dynamics in 43 people living with HIV very early after HIV exposure. We find that all models qualitatively describe the data, but none of the tested models is by itself the best to capture different kinds of heterogeneity. Instead, different models describe differing features of the dynamics more accurately. For example, while the standard viral dynamics model may be the most parsimonious across study participants by the corrected Akaike Information Criterion (AICc), we find that viral peaks are better explained by a model allowing for cellular MOI, using a linear regression analysis as analyzed by R2. These results suggest that heterogeneity in within-host viral dynamics cannot be captured by a single model. Depending on the specific aspect of interest, a corresponding model should be employed.
Collapse
Affiliation(s)
- Ellie Mainou
- Department of Biology, Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Ruy M. Ribeiro
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Jessica M. Conway
- Department of Mathematics, Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
2
|
Antonova A, Kazennova E, Lebedev A, Ozhmegova E, Kuznetsova A, Tumanov A, Bobkova M. Recombinant Forms of HIV-1 in the Last Decade of the Epidemic in the Russian Federation. Viruses 2023; 15:2312. [PMID: 38140553 PMCID: PMC10748268 DOI: 10.3390/v15122312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Currently, HIV-1 displays a substantial level of genetic diversity on a global scale, partly attributed to its recombinant variants. This study seeks to identify and analyze HIV-1 recombinants in Russia during the last decade of the epidemic. A comprehensive examination was conducted, encompassing 3178 partial pol sequences. Subtyping was achieved through various programs including COMET, the Stanford Database, REGA, jpHMM, RIP, and RDP4 for recombination analysis. The study also involved phylogenetic analysis to trace the origins of the identified recombinants. Primary resistance (PrimDR) prevalence and Drug Resistance Mutations (DRMs) were assessed. The study uncovered an overall proportion of recombinants at 8.7%, with a statistically significant increase in their frequency observed over time (p < 0.001). The Northwestern (18.5%) and Siberian (15.0%) Federal Districts exhibited a high prevalence of recombinants, while the Volga (1.9%) and Ural (2.8%) Federal Districts had a lower prevalence. Among HIV-1 recombinants, a PrimDR prevalence of 11.4% was identified. Notably, significant differences in DRMs were observed, with a higher prevalence of M184V in sub-subtype A6 (p = 0.018) and K103N in CRF63_02A6 (p = 0.002). These findings underscore the increasing HIV-1 genetic diversity and highlight a substantial prevalence of PrimDR among its recombinant forms, emphasizing the necessity for ongoing systematic monitoring.
Collapse
Affiliation(s)
- Anastasiia Antonova
- The National Research Center for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.K.); (A.L.); (E.O.); (A.K.); (A.T.)
| | - Elena Kazennova
- The National Research Center for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.K.); (A.L.); (E.O.); (A.K.); (A.T.)
| | - Aleksey Lebedev
- The National Research Center for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.K.); (A.L.); (E.O.); (A.K.); (A.T.)
| | - Ekaterina Ozhmegova
- The National Research Center for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.K.); (A.L.); (E.O.); (A.K.); (A.T.)
| | - Anna Kuznetsova
- The National Research Center for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.K.); (A.L.); (E.O.); (A.K.); (A.T.)
| | - Aleksandr Tumanov
- The National Research Center for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.K.); (A.L.); (E.O.); (A.K.); (A.T.)
| | - Marina Bobkova
- I. Mechnikov Research Institute for Vaccines and Sera, 105064 Moscow, Russia;
| |
Collapse
|
3
|
McLeod DV, Gandon S. Effects of epistasis and recombination between vaccine-escape and virulence alleles on the dynamics of pathogen adaptation. Nat Ecol Evol 2022; 6:786-793. [PMID: 35437006 DOI: 10.1038/s41559-022-01709-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/22/2022] [Indexed: 11/09/2022]
Abstract
Pathogen adaptation to public health interventions such as vaccination may take tortuous routes and involve multiple mutations at different locations in the pathogen genome, acting on distinct phenotypic traits. Yet how these multi-locus adaptations jointly evolve is poorly understood. Here we consider the joint evolution of two adaptations: pathogen escape from the vaccine-induced immune response and adjustments to pathogen virulence affecting transmission or clearance. We elucidate the role played by epistasis and recombination, with an emphasis on the different protective effects of vaccination. We show that vaccines blocking infection, reducing transmission and/or increasing clearance generate positive epistasis between the vaccine-escape and virulence alleles, favouring strains that carry both mutations, whereas vaccines reducing virulence mortality generate negative epistasis, favouring strains that carry either mutation but not both. High rates of recombination can affect these predictions. If epistasis is positive, frequent recombination can prevent the transient build-up of more virulent escape strains. If epistasis is negative, frequent recombination between loci can create an evolutionary bistability, favouring whichever adaptation is more accessible. Our work provides a timely alternative to the variant-centred perspective on pathogen adaptation and captures the effect of different types of vaccine on the interference between multiple adaptive mutations.
Collapse
Affiliation(s)
- David V McLeod
- CEFE, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France. .,Institute of Ecology and Evolution, Universität Bern, Bern, Switzerland. .,Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Sylvain Gandon
- CEFE, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France.
| |
Collapse
|
4
|
McLeod DV, Gandon S. Understanding the evolution of multiple drug resistance in structured populations. eLife 2021; 10:65645. [PMID: 34061029 PMCID: PMC8208818 DOI: 10.7554/elife.65645] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 05/28/2021] [Indexed: 12/19/2022] Open
Abstract
The evolution of multidrug resistance (MDR) is a pressing public health concern. Yet many aspects, such as the role played by population structure, remain poorly understood. Here, we argue that studying MDR evolution by focusing upon the dynamical equations for linkage disequilibrium (LD) can greatly simplify the calculations, generate more insight, and provide a unified framework for understanding the role of population structure. We demonstrate how a general epidemiological model of MDR evolution can be recast in terms of the LD equations. These equations reveal how the different forces generating and propagating LD operate in a dynamical setting at both the population and metapopulation levels. We then apply these insights to show how the LD perspective: (i) explains equilibrium patterns of MDR, (ii) provides a simple interpretative framework for transient evolutionary dynamics, and (iii) can be used to assess the consequences of different drug prescription strategies for MDR evolution.
Collapse
Affiliation(s)
- David V McLeod
- Centre D'Ecologie Fonctionnelle & Evolutive, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France
| | - Sylvain Gandon
- Centre D'Ecologie Fonctionnelle & Evolutive, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France
| |
Collapse
|
5
|
Kreger J, Garcia J, Zhang H, Komarova NL, Wodarz D, Levy DN. Quantifying the dynamics of viral recombination during free virus and cell-to-cell transmission in HIV-1 infection. Virus Evol 2021; 7:veab026. [PMID: 34012557 PMCID: PMC8117450 DOI: 10.1093/ve/veab026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Recombination has been shown to contribute to human immunodeficiency virus-1 (HIV-1) evolution in vivo, but the underlying dynamics are extremely complex, depending on the nature of the fitness landscapes and of epistatic interactions. A less well-studied determinant of recombinant evolution is the mode of virus transmission in the cell population. HIV-1 can spread by free virus transmission, resulting largely in singly infected cells, and also by direct cell-to-cell transmission, resulting in the simultaneous infection of cells with multiple viruses. We investigate the contribution of these two transmission pathways to recombinant evolution, by applying mathematical models to in vitro experimental data on the growth of fluorescent reporter viruses under static conditions (where both transmission pathways operate), and under gentle shaking conditions, where cell-to-cell transmission is largely inhibited. The parameterized mathematical models are then used to extrapolate the viral evolutionary dynamics beyond the experimental settings. Assuming a fixed basic reproductive ratio of the virus (independent of transmission pathway), we find that recombinant evolution is fastest if virus spread is driven only by cell-to-cell transmission and slows down if both transmission pathways operate. Recombinant evolution is slowest if all virus spread occurs through free virus transmission. This is due to cell-to-cell transmission 1, increasing infection multiplicity; 2, promoting the co-transmission of different virus strains from cell to cell; and 3, increasing the rate at which point mutations are generated as a result of more reverse transcription events. This study further resulted in the estimation of various parameters that characterize these evolutionary processes. For example, we estimate that during cell-to-cell transmission, an average of three viruses successfully integrated into the target cell, which can significantly raise the infection multiplicity compared to free virus transmission. In general, our study points towards the importance of infection multiplicity and cell-to-cell transmission for HIV evolution.
Collapse
Affiliation(s)
- Jesse Kreger
- Department of Mathematics, Rowland Hall, University of California, Irvine, CA 92697, USA
| | - Josephine Garcia
- Department of Basic Science, New York University College of Dentistry, 921 Schwartz Building, 345 East 24th Street, New York, NY 10010-9403, USA
| | - Hongtao Zhang
- Department of Basic Science, New York University College of Dentistry, 921 Schwartz Building, 345 East 24th Street, New York, NY 10010-9403, USA
| | - Natalia L Komarova
- Department of Mathematics, Rowland Hall, University of California, Irvine, CA 92697, USA
| | - Dominik Wodarz
- Department of Mathematics, Rowland Hall, University of California, Irvine, CA 92697, USA.,Department of Population Health and Disease Prevention, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA
| | - David N Levy
- Department of Basic Science, New York University College of Dentistry, 921 Schwartz Building, 345 East 24th Street, New York, NY 10010-9403, USA
| |
Collapse
|
6
|
Guo T, Qiu Z, Kitagawa K, Iwami S, Rong L. Modeling HIV multiple infection. J Theor Biol 2020; 509:110502. [PMID: 32998053 DOI: 10.1016/j.jtbi.2020.110502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/09/2020] [Accepted: 09/19/2020] [Indexed: 10/23/2022]
Abstract
Multiple infection of target cells by human immunodeficiency virus (HIV) may lead to viral escape from host immune responses and drug resistance to antiretroviral therapy, bringing more challenges to the control of infection. The mechanisms underlying HIV multiple infection and their relative contributions are not fully understood. In this paper, we develop and analyze a mathematical model that includes sequential cell-free virus infection (i.e.one virus is transmitted each time in a sequential infection of target cells by virus) and cell-to-cell transmission (i.e.multiple viral genomes are transmitted simultaneously from infected to uninfected cells). By comparing model prediction with the distribution data of proviral genomes in HIV-infected spleen cells, we find that multiple infection can be well explained when the two modes of viral transmission are both included. Numerical simulation using the parameter estimates from data fitting shows that the majority of T cell infections are attributed to cell-to-cell transmission and this transmission mode also accounts for more than half of cell's multiple infections. These results suggest that cell-to-cell transmission plays a critical role in forming HIV multiple infection and thus has important implications for HIV evolution and pathogenesis.
Collapse
Affiliation(s)
- Ting Guo
- School of Science, Nanjing University of Science and Technology, Nanjing 210094, China; Department of Mathematics, University of Florida, Gainesville, FL 32611, USA
| | - Zhipeng Qiu
- School of Science, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Kosaku Kitagawa
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 8190395, Japan
| | - Shingo Iwami
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 8190395, Japan
| | - Libin Rong
- Department of Mathematics, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
7
|
Kreger J, Komarova NL, Wodarz D. Effect of synaptic cell-to-cell transmission and recombination on the evolution of double mutants in HIV. J R Soc Interface 2020; 17:20190832. [PMID: 32208824 DOI: 10.1098/rsif.2019.0832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recombination in HIV infection can impact virus evolution in vivo in complex ways, as has been shown both experimentally and mathematically. The effect of free virus versus synaptic, cell-to-cell transmission on the evolution of double mutants, however, has not been investigated. Here, we do so by using a stochastic agent-based model. Consistent with data, we assume spatial constraints for synaptic but not for free-virus transmission. Two important effects of the viral spread mode are observed: (i) for disadvantageous mutants, synaptic transmission protects against detrimental effects of recombination on double mutant persistence. Under free virus transmission, recombination increases double mutant levels for negative epistasis, but reduces them for positive epistasis. This reduction for positive epistasis is much diminished under predominantly synaptic transmission, and recombination can, in fact, lead to increased mutant levels. (ii) The mode of virus spread also directly influences the evolutionary fate of double mutants. For disadvantageous mutants, double mutant production is the predominant driving force, and hence synaptic transmission leads to highest double mutant levels due to increased transmission efficiency. For advantageous mutants, double mutant spread is the most important force, and hence free virus transmission leads to fastest invasion due to better mixing. For neutral mutants, both production and spread of double mutants are important, and hence an optimal mixture of free virus and synaptic transmission maximizes double mutant fractions. Therefore, both free virus and synaptic transmission can enhance or delay double mutant evolution. Implications for drug resistance in HIV are discussed.
Collapse
Affiliation(s)
- Jesse Kreger
- Department of Mathematics, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA
| | - Natalia L Komarova
- Department of Mathematics, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA
| | - Dominik Wodarz
- Department of Mathematics, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA.,Department of Population Health and Disease Prevention Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA
| |
Collapse
|
8
|
Abstract
Models of viral population dynamics have contributed enormously to our understanding of the pathogenesis and transmission of several infectious diseases, the coevolutionary dynamics of viruses and their hosts, the mechanisms of action of drugs, and the effectiveness of interventions. In this chapter, we review major advances in the modeling of the population dynamics of the human immunodeficiency virus (HIV) and briefly discuss adaptations to other viruses.
Collapse
Affiliation(s)
- Pranesh Padmanabhan
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Narendra M Dixit
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, 560012, Karnataka, India.
| |
Collapse
|
9
|
Nagaraja P, Alexander HK, Bonhoeffer S, Dixit NM. Influence of recombination on acquisition and reversion of immune escape and compensatory mutations in HIV-1. Epidemics 2016; 14:11-25. [DOI: 10.1016/j.epidem.2015.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 09/11/2015] [Accepted: 09/11/2015] [Indexed: 11/28/2022] Open
|
10
|
The Role of Recombination in Evolutionary Rescue. Genetics 2015; 202:721-32. [PMID: 26627842 DOI: 10.1534/genetics.115.180299] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 11/16/2015] [Indexed: 11/18/2022] Open
Abstract
How likely is it that a population escapes extinction through adaptive evolution? The answer to this question is of great relevance in conservation biology, where we aim at species' rescue and the maintenance of biodiversity, and in agriculture and medicine, where we seek to hamper the emergence of pesticide or drug resistance. By reshuffling the genome, recombination has two antagonistic effects on the probability of evolutionary rescue: it generates and it breaks up favorable gene combinations. Which of the two effects prevails depends on the fitness effects of mutations and on the impact of stochasticity on the allele frequencies. In this article, we analyze a mathematical model for rescue after a sudden environmental change when adaptation is contingent on mutations at two loci. The analysis reveals a complex nonlinear dependence of population survival on recombination. We moreover find that, counterintuitively, a fast eradication of the wild type can promote rescue in the presence of recombination. The model also shows that two-step rescue is not unlikely to happen and can even be more likely than single-step rescue (where adaptation relies on a single mutation), depending on the circumstances.
Collapse
|
11
|
Perales C, Moreno E, Domingo E. Clonality and intracellular polyploidy in virus evolution and pathogenesis. Proc Natl Acad Sci U S A 2015; 112:8887-92. [PMID: 26195777 PMCID: PMC4517279 DOI: 10.1073/pnas.1501715112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the present article we examine clonality in virus evolution. Most viruses retain an active recombination machinery as a potential means to initiate new levels of genetic exploration that go beyond those attainable solely by point mutations. However, despite abundant recombination that may be linked to molecular events essential for genome replication, herein we provide evidence that generation of recombinants with altered biological properties is not essential for the completion of the replication cycles of viruses, and that viral lineages (near-clades) can be defined. We distinguish mechanistically active but inconsequential recombination from evolutionarily relevant recombination, illustrated by episodes in the field and during experimental evolution. In the field, recombination has been at the origin of new viral pathogens, and has conferred fitness advantages to some viruses once the parental viruses have attained a sufficient degree of diversification by point mutations. In the laboratory, recombination mediated a salient genome segmentation of foot-and-mouth disease virus, an important animal pathogen whose genome in nature has always been characterized as unsegmented. We propose a model of continuous mutation and recombination, with punctuated, biologically relevant recombination events for the survival of viruses, both as disease agents and as promoters of cellular evolution. Thus, clonality is the standard evolutionary mode for viruses because recombination is largely inconsequential, since the decisive events for virus replication and survival are not dependent on the exchange of genetic material and formation of recombinant (mosaic) genomes.
Collapse
Affiliation(s)
- Celia Perales
- Centro de Biologia Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, E-28049 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain; and Liver Unit, Internal Medicine, Laboratory of Malalties Hepàtiques, Vall d'Hebron Institut de Recerca-Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Elena Moreno
- Centro de Biologia Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Esteban Domingo
- Centro de Biologia Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, E-28049 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain; and
| |
Collapse
|
12
|
Moradigaravand D, Kouyos R, Hinkley T, Haddad M, Petropoulos CJ, Engelstädter J, Bonhoeffer S. Recombination accelerates adaptation on a large-scale empirical fitness landscape in HIV-1. PLoS Genet 2014; 10:e1004439. [PMID: 24967626 PMCID: PMC4072600 DOI: 10.1371/journal.pgen.1004439] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/30/2014] [Indexed: 01/18/2023] Open
Abstract
Recombination has the potential to facilitate adaptation. In spite of the substantial body of theory on the impact of recombination on the evolutionary dynamics of adapting populations, empirical evidence to test these theories is still scarce. We examined the effect of recombination on adaptation on a large-scale empirical fitness landscape in HIV-1 based on in vitro fitness measurements. Our results indicate that recombination substantially increases the rate of adaptation under a wide range of parameter values for population size, mutation rate and recombination rate. The accelerating effect of recombination is stronger for intermediate mutation rates but increases in a monotonic way with the recombination rates and population sizes that we examined. We also found that both fitness effects of individual mutations and epistatic fitness interactions cause recombination to accelerate adaptation. The estimated epistasis in the adapting populations is significantly negative. Our results highlight the importance of recombination in the evolution of HIV-I. One of the most challenging issues in evolutionary biology concerns the question of why most organisms exchange genetic material with each other, e.g. during sexual reproduction. Gene shuffling can create genetic diversity that facilitates adaptation to new environments, but theory shows that this effect is highly dependent on how different genes interact in determining the fitness of an organism. Using a large data set of fitness values based on HIV-1, we provide evidence that shuffling of genetic material indeed raises the level of genetic diversity, and as a result accelerates adaptation. Our results also propose genetic shuffling as a mechanism utilized by HIV to accelerate the evolution of multi-drug-resistant strains.
Collapse
Affiliation(s)
- Danesh Moradigaravand
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
- * E-mail: (DM); (SB)
| | - Roger Kouyos
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Trevor Hinkley
- WestCHEM, School of Chemistry, The University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Mojgan Haddad
- Monogram Biosciences, South San Francisco, California, United States of America
| | | | - Jan Engelstädter
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Sebastian Bonhoeffer
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- * E-mail: (DM); (SB)
| |
Collapse
|
13
|
Giorgi EE, Korber BT, Perelson AS, Bhattacharya T. Modeling sequence evolution in HIV-1 infection with recombination. J Theor Biol 2013; 329:82-93. [PMID: 23567647 PMCID: PMC3667750 DOI: 10.1016/j.jtbi.2013.03.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 02/12/2013] [Accepted: 03/27/2013] [Indexed: 12/20/2022]
Abstract
Previously we proposed two simplified models of early HIV-1 evolution. Both showed that under a model of neutral evolution and exponential growth, the mean Hamming distance (HD) between genetic sequences grows linearly with time. In this paper we describe a more realistic continuous-time, age-dependent mathematical model of infection and viral replication, and show through simulations that even in this more complex description, the mean Hamming distance grows linearly with time. This remains unchanged when we introduce recombination, though the confidence intervals of the mean HD obtained ignoring recombination are overly conservative.
Collapse
Affiliation(s)
- Elena E Giorgi
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | | | | |
Collapse
|
14
|
Komarova NL, Wodarz D. Virus dynamics in the presence of synaptic transmission. Math Biosci 2013; 242:161-71. [PMID: 23357287 PMCID: PMC4122664 DOI: 10.1016/j.mbs.2013.01.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 01/03/2013] [Accepted: 01/11/2013] [Indexed: 11/16/2022]
Abstract
Traditionally, virus dynamics models consider populations of infected and target cells, and a population of free virus that can infect susceptible cells. In recent years, however, it has become. clear that direct cell-to-cell transmission can also play an important role for the in vivo spread of viruses, especially retroviruses such as human T lymphotropic virus-1 (HTLV-1) and Human immunodeficiency virus (HIV). Such cell-to-cell transmission is thought to occur through the formation of virological synapses that are formed between an infected source cell and a susceptible target cell. Here we formulate and analyze a class of virus dynamics models that include such cell-cell synaptic transmission. We explore different "strategies" of the virus defined by the number of viruses passed per synapse, and determine how the choice of strategy influences the basic reproductive ratio, R0, of the virus and thus its ability to establish a persistent infection. We show that depending on specific assumptions about the viral kinetics, strategies with low or intermediate numbers of viruses transferred may correspond to the highest values of R0. We also explore the evolutionary competition of viruses of different strains, which differ by their synaptic strategy, and show that viruses characterized by synaptic strategies with the highest R0 win the evolutionary competition and exclude other, inferior, strains.
Collapse
Affiliation(s)
- Natalia L Komarova
- Department of Mathematics, University of California Irvine, Irvine, CA 92697, USA
| | | |
Collapse
|
15
|
Circulating virus load determines the size of bottlenecks in viral populations progressing within a host. PLoS Pathog 2012; 8:e1003009. [PMID: 23133389 PMCID: PMC3486874 DOI: 10.1371/journal.ppat.1003009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 09/19/2012] [Indexed: 01/07/2023] Open
Abstract
For any organism, population size, and fluctuations thereof, are of primary importance in determining the forces driving its evolution. This is particularly true for viruses--rapidly evolving entities that form populations with transient and explosive expansions alternating with phases of migration, resulting in strong population bottlenecks and associated founder effects that increase genetic drift. A typical illustration of this pattern is the progression of viral disease within a eukaryotic host, where such demographic fluctuations are a key factor in the emergence of new variants with altered virulence. Viruses initiate replication in one or only a few infection foci, then move through the vasculature to seed secondary infection sites and so invade distant organs and tissues. Founder effects during this within-host colonization might depend on the concentration of infectious units accumulating and circulating in the vasculature, as this represents the infection dose reaching new organs or "territories". Surprisingly, whether or not the easily measurable circulating (plasma) virus load directly drives the size of population bottlenecks during host colonization has not been documented in animal viruses, while in plants the virus load within the sap has never been estimated. Here, we address this important question by monitoring both the virus concentration flowing in host plant sap, and the number of viral genomes founding the population in each successive new leaf. Our results clearly indicate that the concentration of circulating viruses directly determines the size of bottlenecks, which hence controls founder effects and effective population size during disease progression within a host.
Collapse
|
16
|
Abstract
Evolution of RNA viruses occurs through disequilibria of collections of closely related mutant spectra or mutant clouds termed viral quasispecies. Here we review the origin of the quasispecies concept and some biological implications of quasispecies dynamics. Two main aspects are addressed: (i) mutant clouds as reservoirs of phenotypic variants for virus adaptability and (ii) the internal interactions that are established within mutant spectra that render a virus ensemble the unit of selection. The understanding of viruses as quasispecies has led to new antiviral designs, such as lethal mutagenesis, whose aim is to drive viruses toward low fitness values with limited chances of fitness recovery. The impact of quasispecies for three salient human pathogens, human immunodeficiency virus and the hepatitis B and C viruses, is reviewed, with emphasis on antiviral treatment strategies. Finally, extensions of quasispecies to nonviral systems are briefly mentioned to emphasize the broad applicability of quasispecies theory.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), C/ Nicolás Cabrera, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.
| | | | | |
Collapse
|
17
|
Althaus CL, De Boer RJ. Impaired immune evasion in HIV through intracellular delays and multiple infection of cells. Proc Biol Sci 2012; 279:3003-10. [PMID: 22492063 DOI: 10.1098/rspb.2012.0328] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
With its high mutation rate, HIV is capable of escape from recognition, suppression and/or killing by CD8(+) cytotoxic T lymphocytes (CTLs). The rate at which escape variants replace each other can give insights into the selective pressure imposed by single CTL clones. We investigate the effects of specific characteristics of the HIV life cycle on the dynamics of immune escape. First, it has been found that cells in HIV-infected patients can carry multiple copies of proviruses. To investigate how this process affects the emergence of immune escape, we develop a mathematical model of HIV dynamics with multiple infections of cells. Increasing the frequency of multiple-infected cells delays the appearance of immune escape variants, slows down the rate at which they replace the wild-type variant and can even prevent escape variants from taking over the quasi-species. Second, we study the effect of the intracellular eclipse phase on the rate of escape and show that escape rates are expected to be slower than previously anticipated. In summary, slow escape rates do not necessarily imply inefficient CTL-mediated killing of HIV-infected cells, but are at least partly a result of the specific characteristics of the viral life cycle.
Collapse
Affiliation(s)
- Christian L Althaus
- Theoretical Biology and Bioinformatics, Utrecht University, 3584 CH Utrecht, The Netherlands.
| | | |
Collapse
|
18
|
Abstract
The evolution of resistance to drugs is a major public health concern as it erodes the efficacy of our therapeutic arsenal against bacterial, viral, and fungal pathogens. Increasingly, it is recognized that the evolution of resistance involves genetic changes at more than one locus, both in cases where multiple changes are required to obtain high-level resistance, and where compensatory changes at secondary loci ameliorate the costs of resistance. Similarly, multiple loci are often involved in the evolution of multidrug resistance. There has been widespread interest recently in understanding the evolutionary consequences of multilocus resistance, with many empirical studies documenting extensive patterns of genetic interactions (i.e., epistasis) among the loci involved. Currently, however, there are few general theoretical results available that bridge the gap between classical multilocus population genetics and mathematical epidemiology. Here, such theory is developed to shed new light on these previous studies, and to provide further guidance on the type of data required to predict the evolution of pathogens in response to drug pressure. Our results reveal the importance of feedbacks between the epidemiological and evolutionary dynamics, and illustrate how these feedbacks can be exploited to control resistance. In particular, we show how interventions such as social distancing and isolation can influence rates of recombination, and how this then can slow the spread of multilocus resistance and increase the likelihood of reversion to drug sensitivity once drug therapy has ceased.
Collapse
Affiliation(s)
- Troy Day
- Department of Mathematics and Statistics and Department of Biology, Jeffery Hall, Queen's University, Kingston, ON, K7L 3N6, Canada.
| | | |
Collapse
|
19
|
zur Wiesch PA, Kouyos R, Engelstädter J, Regoes RR, Bonhoeffer S. Population biological principles of drug-resistance evolution in infectious diseases. THE LANCET. INFECTIOUS DISEASES 2011; 11:236-47. [PMID: 21371657 DOI: 10.1016/s1473-3099(10)70264-4] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The emergence of resistant pathogens in response to selection pressure by drugs and their possible disappearance when drug use is discontinued are evolutionary processes common to many pathogens. Population biological models have been used to study the dynamics of resistance in viruses, bacteria, and eukaryotic microparasites both at the level of the individual treated host and of the treated host population. Despite the existence of generic features that underlie such evolutionary dynamics, different conclusions have been reached about the key factors affecting the rate of resistance evolution and how to best use drugs to minimise the risk of generating high levels of resistance. Improved understanding of generic versus specific population biological aspects will help to translate results between different studies, and allow development of a more rational basis for sustainable drug use than exists at present.
Collapse
Affiliation(s)
- Pia Abel zur Wiesch
- Integrative Biology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
20
|
Mostowy R, Kouyos RD, Fouchet D, Bonhoeffer S. The role of recombination for the coevolutionary dynamics of HIV and the immune response. PLoS One 2011; 6:e16052. [PMID: 21364750 PMCID: PMC3041767 DOI: 10.1371/journal.pone.0016052] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 12/07/2010] [Indexed: 11/19/2022] Open
Abstract
The evolutionary implications of recombination in HIV remain not fully understood. A plausible effect could be an enhancement of immune escape from cytotoxic T lymphocytes (CTLs). In order to test this hypothesis, we constructed a population dynamic model of immune escape in HIV and examined the viral-immune dynamics with and without recombination. Our model shows that recombination (i) increases the genetic diversity of the viral population, (ii) accelerates the emergence of escape mutations with and without compensatory mutations, and (iii) accelerates the acquisition of immune escape mutations in the early stage of viral infection. We see a particularly strong impact of recombination in systems with broad, non-immunodominant CTL responses. Overall, our study argues for the importance of recombination in HIV in allowing the virus to adapt to changing selective pressures as imposed by the immune system and shows that the effect of recombination depends on the immunodominance pattern of effector T cell responses.
Collapse
Affiliation(s)
- Rafal Mostowy
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland.
| | | | | | | |
Collapse
|
21
|
Schlub TE, Smyth RP, Grimm AJ, Mak J, Davenport MP. Accurately measuring recombination between closely related HIV-1 genomes. PLoS Comput Biol 2010; 6:e1000766. [PMID: 20442872 PMCID: PMC2861704 DOI: 10.1371/journal.pcbi.1000766] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 03/26/2010] [Indexed: 11/19/2022] Open
Abstract
Retroviral recombination is thought to play an important role in the generation of immune escape and multiple drug resistance by shuffling pre-existing mutations in the viral population. Current estimates of HIV-1 recombination rates are derived from measurements within reporter gene sequences or genetically divergent HIV sequences. These measurements do not mimic the recombination occurring in vivo, between closely related genomes. Additionally, the methods used to measure recombination make a variety of assumptions about the underlying process, and often fail to account adequately for issues such as co-infection of cells or the possibility of multiple template switches between recombination sites. We have developed a HIV-1 marker system by making a small number of codon modifications in gag which allow recombination to be measured over various lengths between closely related viral genomes. We have developed statistical tools to measure recombination rates that can compensate for the possibility of multiple template switches. Our results show that when multiple template switches are ignored the error is substantial, particularly when recombination rates are high, or the genomic distance is large. We demonstrate that this system is applicable to other studies to accurately measure the recombination rate and show that recombination does not occur randomly within the HIV genome.
Collapse
Affiliation(s)
- Timothy E. Schlub
- Centre for Vascular Research, University of New South Wales, Sydney, New South Wales, Australia
| | - Redmond P. Smyth
- Centre for Virology, The Burnet Institute, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Andrew J. Grimm
- Centre for Vascular Research, University of New South Wales, Sydney, New South Wales, Australia
| | - Johnson Mak
- Centre for Virology, The Burnet Institute, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
- Department of Microbiology, Monash University, Melbourne, Victoria, Australia
- * E-mail: (JM); (MPD)
| | - Miles P. Davenport
- Centre for Vascular Research, University of New South Wales, Sydney, New South Wales, Australia
- * E-mail: (JM); (MPD)
| |
Collapse
|