1
|
Hayatdavoudi P, Hosseini M, Hajali V, Hosseini A, Rajabian A. The role of astrocytes in epileptic disorders. Physiol Rep 2022; 10:e15239. [PMID: 35343625 PMCID: PMC8958496 DOI: 10.14814/phy2.15239] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/27/2022] [Accepted: 03/09/2022] [Indexed: 04/17/2023] Open
Abstract
Epilepsy affects about 1% of the population and approximately 30% of epileptic patients are resistant to current antiepileptic drugs. As a hallmark in epileptic tissue, many of the epileptic patients show changes in glia morphology and function. There are characteristic changes in different types of glia in different epilepsy models. Some of these changes such as astrogliosis are enough to provoke epileptic seizures. Astrogliosis is well known in mesial temporal lobe epilepsy (MTLE), the most common form of refractory epilepsy. A better understanding of astrocytes alterations could lead to novel and efficient pharmacological approaches for epilepsy. In this review, we present the alterations of astrocyte morphology and function and present some instances of targeting astrocytes in seizure and epilepsy.
Collapse
Affiliation(s)
- Parichehr Hayatdavoudi
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
- Department of PhysiologyFaculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research CenterMashhad University of Medical SciencesMashhadIran
| | - Vahid Hajali
- Department of NeuroscienceFaculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Azar Hosseini
- Pharmacological Research Center of Medicinal PlantsMashhad University of Medical SciencesMashhadIran
- Department of PharmacologyFaculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Arezoo Rajabian
- Department of Internal MedicineFaculty of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
2
|
Peterson AR, Binder DK. Astrocyte Glutamate Uptake and Signaling as Novel Targets for Antiepileptogenic Therapy. Front Neurol 2020; 11:1006. [PMID: 33013665 PMCID: PMC7505989 DOI: 10.3389/fneur.2020.01006] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022] Open
Abstract
Astrocytes regulate and respond to extracellular glutamate levels in the central nervous system (CNS) via the Na+-dependent glutamate transporters glutamate transporter-1 (GLT-1) and glutamate aspartate transporter (GLAST) and the metabotropic glutamate receptors (mGluR) 3 and mGluR5. Both impaired astrocytic glutamate clearance and changes in metabotropic glutamate signaling could contribute to the development of epilepsy. Dysregulation of astrocytic glutamate transporters, GLT-1 and GLAST, is a common finding across patients and preclinical seizure models. Astrocytic metabotropic glutamate receptors, particularly mGluR5, have been shown to be dysregulated in both humans and animal models of temporal lobe epilepsy (TLE). In this review, we synthesize the available evidence regarding astrocytic glutamate homeostasis and astrocytic mGluRs in the development of epilepsy. Modulation of astrocyte glutamate uptake and/or mGluR activation could lead to novel glial therapeutics for epilepsy.
Collapse
Affiliation(s)
- Allison R Peterson
- Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Devin K Binder
- Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
3
|
Jarero-Basulto JJ, Gasca-Martínez Y, Rivera-Cervantes MC, Ureña-Guerrero ME, Feria-Velasco AI, Beas-Zarate C. Interactions Between Epilepsy and Plasticity. Pharmaceuticals (Basel) 2018; 11:ph11010017. [PMID: 29414852 PMCID: PMC5874713 DOI: 10.3390/ph11010017] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/01/2018] [Accepted: 02/06/2018] [Indexed: 02/06/2023] Open
Abstract
Undoubtedly, one of the most interesting topics in the field of neuroscience is the ability of the central nervous system to respond to different stimuli (normal or pathological) by modifying its structure and function, either transiently or permanently, by generating neural cells and new connections in a process known as neuroplasticity. According to the large amount of evidence reported in the literature, many stimuli, such as environmental pressures, changes in the internal dynamic steady state of the organism and even injuries or illnesses (e.g., epilepsy) may induce neuroplasticity. Epilepsy and neuroplasticity seem to be closely related, as the two processes could positively affect one another. Thus, in this review, we analysed some neuroplastic changes triggered in the hippocampus in response to seizure-induced neuronal damage and how these changes could lead to the establishment of temporal lobe epilepsy, the most common type of focal human epilepsy.
Collapse
Affiliation(s)
- José J Jarero-Basulto
- Cellular Neurobiology Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, 45220 Zapopan, Jalisco, Mexico.
| | - Yadira Gasca-Martínez
- Cellular Neurobiology Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, 45220 Zapopan, Jalisco, Mexico.
| | - Martha C Rivera-Cervantes
- Cellular Neurobiology Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, 45220 Zapopan, Jalisco, Mexico.
| | - Mónica E Ureña-Guerrero
- Neurotransmission Biology Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, 45220 Zapopan, Jalisco, Mexico.
| | - Alfredo I Feria-Velasco
- Cellular Neurobiology Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, 45220 Zapopan, Jalisco, Mexico.
| | - Carlos Beas-Zarate
- Development and Neural Regeneration Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, 45220 Zapopan, Jalisco, Mexico.
| |
Collapse
|
4
|
Dossi E, Vasile F, Rouach N. Human astrocytes in the diseased brain. Brain Res Bull 2017; 136:139-156. [PMID: 28212850 PMCID: PMC5766741 DOI: 10.1016/j.brainresbull.2017.02.001] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 12/23/2022]
Abstract
Astrocytes are key active elements of the brain that contribute to information processing. They not only provide neurons with metabolic and structural support, but also regulate neurogenesis and brain wiring. Furthermore, astrocytes modulate synaptic activity and plasticity in part by controlling the extracellular space volume, as well as ion and neurotransmitter homeostasis. These findings, together with the discovery that human astrocytes display contrasting characteristics with their rodent counterparts, point to a role for astrocytes in higher cognitive functions. Dysfunction of astrocytes can thereby induce major alterations in neuronal functions, contributing to the pathogenesis of several brain disorders. In this review we summarize the current knowledge on the structural and functional alterations occurring in astrocytes from the human brain in pathological conditions such as epilepsy, primary tumours, Alzheimer's disease, major depressive disorder and Down syndrome. Compelling evidence thus shows that dysregulations of astrocyte functions and interplay with neurons contribute to the development and progression of various neurological diseases. Targeting astrocytes is thus a promising alternative approach that could contribute to the development of novel and effective therapies to treat brain disorders.
Collapse
Affiliation(s)
- Elena Dossi
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France.
| | - Flora Vasile
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France.
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France.
| |
Collapse
|
5
|
Griffith CM, Xie MX, Qiu WY, Sharp AA, Ma C, Pan A, Yan XX, Patrylo PR. Aberrant expression of the pore-forming KATP channel subunit Kir6.2 in hippocampal reactive astrocytes in the 3xTg-AD mouse model and human Alzheimer’s disease. Neuroscience 2016; 336:81-101. [DOI: 10.1016/j.neuroscience.2016.08.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 08/15/2016] [Accepted: 08/20/2016] [Indexed: 12/21/2022]
|
6
|
Kirischuk S, Héja L, Kardos J, Billups B. Astrocyte sodium signaling and the regulation of neurotransmission. Glia 2015; 64:1655-66. [DOI: 10.1002/glia.22943] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/28/2015] [Indexed: 02/01/2023]
Affiliation(s)
- Sergei Kirischuk
- University Medical Center of the Johannes Gutenberg University Mainz, Institute of Physiology; Mainz Germany
| | - László Héja
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences; Budapest Hungary
| | - Julianna Kardos
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences; Budapest Hungary
| | - Brian Billups
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University; Acton ACT Australia
| |
Collapse
|
7
|
Hippocampus, hippocampal sclerosis and epilepsy. Pharmacol Rep 2014; 65:555-65. [PMID: 23950578 DOI: 10.1016/s1734-1140(13)71033-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 03/13/2013] [Indexed: 01/29/2023]
Abstract
Hippocampal sclerosis (HS) is considered one of the major pathogenic factors of drug-resistant temporal lobe epilepsy. HS is characterized by selective loss of pyramidal neurons - especially of sectors CA1 and CA3 of the hippocampus - pathological proliferation of interneuron networks, and severe glia reaction. These changes occur in the course of long-term and complex epileptogenesis. The authors, on the basis of a review of the literature and own experience, present the pathomechanisms leading to hippocampal sclerosis and epileptogenesis, including various morphological and functional elements of this structure of the brain and pharmacological possibilities of preventing these processes.
Collapse
|
8
|
Qiao X, Werkman TR, Gorter JA, Wadman WJ, van Vliet EA. Expression of sodium channel α subunits 1.1, 1.2 and 1.6 in rat hippocampus after kainic acid-induced epilepsy. Epilepsy Res 2013; 106:17-28. [PMID: 23886654 DOI: 10.1016/j.eplepsyres.2013.06.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 05/30/2013] [Accepted: 06/25/2013] [Indexed: 12/19/2022]
Abstract
Voltage-gated Na(+) channels control neuronal excitability and are the primary target for the majority of anti-epileptic drugs. This study investigates the (sub)cellular expression patterns of three important brain-associated Na(+) channel α subunits: NaV1.1, NaV1.2 and NaV1.6 during epileptogenesis (induced by kainic acid) using time points that cover the period from induction to the chronic phase of epilepsy. NaV1.1 immunoreactivity was persistently reduced at 1 day, 3 weeks and 2 months after SE in CA1 and CA3. About 50% of the NaV1.1-positive interneurons was lost at one day after SE in all regions investigated. In the hilus a similar reduction in NeuN-positive neurons was found, while in the CA1 and CA3 region the loss in NeuN-positive neurons only reached 15% in the chronic phase of epilepsy. This implies a stronger shift in the balance between excitation and inhibition toward excitation in the CA1 and CA3 region than in the hilus. NaV1.2 immunoreactivity in the inner molecular layer of the dentate gyrus was lower than control at 1 day after SE. It increased at 3 weeks and 2 months after SE in the inner molecular layer and overlapped with sprouted mossy fibers. NaV1.6 immunoreactivity in the dendritic region of CA1 and CA3 was persistently reduced at all time-points during epileptogenesis. Some astrocytes expressed NaV1.1 and NaV1.6 at 3 weeks after SE. Expression data alone are not sufficient to explain changes in network stability, or infer causality in epileptogenesis. These results demonstrate that hippocampal sub-regional expression of NaV1.1, NaV1.2 and NaV1.6 Na(+) channel α subunits is altered during epileptogenesis in a time and location specific way. This implies that understanding epileptogenesis has to take into account several distinct and type-specific changes in sodium channel expression.
Collapse
Affiliation(s)
- Xin Qiao
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
9
|
de Lanerolle NC, Lee TS, Spencer DD. Astrocytes and epilepsy. Neurotherapeutics 2010; 7:424-38. [PMID: 20880506 PMCID: PMC5084304 DOI: 10.1016/j.nurt.2010.08.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Revised: 07/28/2010] [Accepted: 08/04/2010] [Indexed: 01/07/2023] Open
Abstract
Astrocytes form a significant constituent of seizure foci in the human brain. For a long time it was believed that astrocytes play a significant role in the causation of seizures. With the increase in our understanding of the unique biology of these cells, their precise role in seizure foci is receiving renewed attention. This article reviews the information now available on the role of astrocytes in the hippocampal seizure focus in patients with temporal lobe epilepsy with hippocampal sclerosis. Our intent is to try to integrate the available data. Astrocytes at seizure foci seem to not be a homogeneous population of cells, and in addition to typical glial fibrillary acidic protein, positive reactive astrocytes also include a population of neuron glia-2-like cells The astrocytes in sclerotic hippocampi differ from those in nonsclerotic hippocampi in their membrane physiology, having elevated Na+ channels and reduced inwardly rectifying potassium ion channels, and some having the capacity to generate action potentials. They also have reduced glutamine synthetase and increased glutamate dehydrogenase activity. The molecular interface between the astrocyte and microvasculature is also changed. The astrocytes are also associated with increased expression of many molecules normally concerned with immune and inflammatory functions. A speculative mechanism postulates that neuron glia-2-like cells may be involved in creating a high glutamate environment, whereas the function of more typical reactive astrocytes contribute to maintain high extracellular K+ levels; both factors contributing to the hyperexcitability of subicular neurons to generate epileptiform activity. The functions of the astrocyte vascular interface may be more critical to the processes involved in epileptogenesis.
Collapse
Affiliation(s)
- Nihal C de Lanerolle
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut 06520, USA.
| | | | | |
Collapse
|
10
|
Stewart TH, Eastman CL, Groblewski PA, Fender JS, Verley DR, Cook DG, D'Ambrosio R. Chronic dysfunction of astrocytic inwardly rectifying K+ channels specific to the neocortical epileptic focus after fluid percussion injury in the rat. J Neurophysiol 2010; 104:3345-60. [PMID: 20861444 DOI: 10.1152/jn.00398.2010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Astrocytic inwardly rectifying K(+) currents (I(KIR)) have an important role in extracellular K(+) homeostasis, which influences neuronal excitability, and serum extravasation has been linked to impaired K(IR)-mediated K(+) buffering and chronic hyperexcitability. Head injury induces acute impairment in astroglial membrane I(KIR) and impaired K(+) buffering in the rat hippocampus, but chronic spontaneous seizures appear in the perilesional neocortex--not the hippocampus--in the early weeks to months after injury. Thus we examined astrocytic K(IR) channel pathophysiology in both neocortex and hippocampus after rostral parasaggital fluid percussion injury (rpFPI). rpFPI induced greater acute serum extravasation and metabolic impairment in the perilesional neocortex than in the underlying hippocampus, and in situ whole cell recordings showed a greater acute loss of astrocytic I(KIR) in neocortex than hippocampus. I(KIR) loss persisted through 1 mo after injury only in the neocortical epileptic focus, but fully recovered in the hippocampus that did not generate chronic seizures. Neocortical cell-attached recordings showed no loss or an increase of I(KIR) in astrocytic somata. Confocal imaging showed depletion of KIR4.1 immunoreactivity especially in processes--not somata--of neocortical astrocytes, whereas hippocampal astrocytes appeared normal. In naïve animals, intracortical infusion of serum, devoid of coagulation-mediating thrombin activity, reproduces the effects of rpFPI both in vivo and at the cellular level. In vivo serum infusion induces partial seizures similar to those induced by rpFPI, whereas bath-applied serum, but not dialyzed albumin, rapidly silenced astrocytic K(IR) membrane currents in whole cell and cell-attached patch-clamp recordings in situ. Thus both acute impairment in astrocytic I(KIR) and chronic spontaneous seizures typical of rpFPI are reproduced by serum extravasation, whereas the chronic impairment in astroglial I(KIR) is specific to the neocortex that develops the epileptic focus.
Collapse
Affiliation(s)
- Tessandra H Stewart
- Department of Neurological Surgery, University of Washington, School of Medicine, Seattle, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Takahashi DK, Vargas JR, Wilcox KS. Increased coupling and altered glutamate transport currents in astrocytes following kainic-acid-induced status epilepticus. Neurobiol Dis 2010; 40:573-85. [PMID: 20691786 DOI: 10.1016/j.nbd.2010.07.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 07/24/2010] [Accepted: 07/27/2010] [Indexed: 01/13/2023] Open
Abstract
Profound astrogliosis coincident with neuronal cell loss is universally described in human and animal models of temporal lobe epilepsy (TLE). In the kainic acid-induced status epilepticus (SE) model of TLE, astrocytes in the hippocampus become reactive soon after SE and before the onset of spontaneous seizures. To determine if astrocytes in the hippocampus exhibit changes in function soon after SE, we recorded from SR101-labeled astrocytes using the whole-cell patch technique in hippocampal brain slices prepared from control and kainic-acid-treated rats. Glutamate transporter-dependent currents were found to have significantly faster decay time kinetics and in addition, dye coupling between astrocytes was substantially increased. Consistent with an increase in dye coupling in reactive astrocytes, immunoblot experiments demonstrated a significant increase in both glial fibrillary acidic protein (GFAP) and connexin 43, a major gap junction protein expressed by astrocytes. In contrast to what has been observed in resected tissue from patients with refractory epilepsy, changes in potassium currents were not observed shortly after KA-induced SE. While many changes in neuronal function have been identified during the initial period of low seizure probability in this model of TLE, the present study contributes to the growing body of literature suggesting a role for astrocytes in the process of epileptogenesis.
Collapse
Affiliation(s)
- D K Takahashi
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT 84108, USA
| | | | | |
Collapse
|
12
|
Jabs R, Seifert G, Steinhäuser C. Astrocytic function and its alteration in the epileptic brain. Epilepsia 2008; 49 Suppl 2:3-12. [PMID: 18226167 DOI: 10.1111/j.1528-1167.2008.01488.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Currently available anticonvulsant drugs and complementary therapies are insufficient to control seizures in about a third of epileptic patients. Thus, there is an urgent need for new treatments that prevent the development of epilepsy and control it better in patients already afflicted with the disease. A prerequisite to reach this goal is a deeper understanding of the cellular basis of hyperexcitability and synchronization in the affected tissue. Epilepsy is often accompanied by massive reactive gliosis. Although the significance of this alteration is poorly understood, recent findings suggest that modified astroglial function may have a role in the generation and spread of seizure activity. Here we summarize properties of astrocytes as well as their changes that can be associated with epileptic tissue. The goal is to provide an understanding of the current knowledge of these cells with the long-term view of providing a foundation for the development of novel hypotheses about the role of glia in epilepsy.
Collapse
Affiliation(s)
- Ronald Jabs
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | | | | |
Collapse
|
13
|
Borges K, McDermott D, Irier H, Smith Y, Dingledine R. Degeneration and proliferation of astrocytes in the mouse dentate gyrus after pilocarpine-induced status epilepticus. Exp Neurol 2006; 201:416-27. [PMID: 16793040 PMCID: PMC4090707 DOI: 10.1016/j.expneurol.2006.04.031] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 04/14/2006] [Accepted: 04/28/2006] [Indexed: 11/27/2022]
Abstract
Astrocytes are relatively resistant to injury compared to neurons and oligodendrocytes. Here, we report transient region-specific loss of astrocytes in mice early after pilocarpine-induced status epilepticus (SE). In the dentate hilus, immunoreactivity for glial acidic fibrillary protein (GFAP) was decreased, and the number of healthy appearing GFAP- or S100beta-positive cells was significantly reduced (> or =65%) 1 and 3 days after pilocarpine-induced SE. Many remaining GFAP-positive cells were shrunken, and 1 day after SE electron microscopy revealed numerous electron-dense degenerating astrocyte processes and degenerating glial somata in the hilus. Degeneration of GFAP-expressing cells may be linked to hilar neuronal death, because we did not observe loss of astrocytes after kainate-induced SE, after which hilar neurons remained intact. Ten days after SE, hilar GFAP immunoreactivity had returned, partially from GFAP-positive cells in the hilus. Unlike control mice, many GFAP-positive hilar processes originated from cell bodies located in the subgranular zone (SGZ). To investigate whether proliferation contributes to hilar repopulation, we injected 5-bromo-2'-deoxyuridine (BrdU) 3 days after SE. Five hours later and up to 31 days after SE, many BrdU/GFAP colabeled cells were found in the hilus and the SGZ, some with hilar processes, indicating that proliferation in both areas contributes to generation of hilar astrocytes and astrocyte processes. In contrast to pilocarpine-induced SE in mice, astrocyte degeneration was not found after pilocarpine-induced SE in rats. These findings demonstrate astrocyte degeneration in the mouse dentate hilus specifically in the mouse pilocarpine epilepsy model, followed by astrogenesis leading to hilar repopulation.
Collapse
Affiliation(s)
- Karin Borges
- Department of Pharmacology, Emory University, Atlanta, GA 30322, USA.
| | | | | | | | | |
Collapse
|
14
|
Isokawa M, McKhann GM. Electrophysiological and morphological characterization of dentate astrocytes in the hippocampus. ACTA ACUST UNITED AC 2006; 65:125-34. [PMID: 16114022 DOI: 10.1002/neu.20186] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We studied electrophysiological and morphological properties of astrocytes in the dentate gyrus of the rat hippocampus in slices. Intracellular application of Lucifer yellow revealed two types of morphology: one with a long process extruding from the cell body, and the other with numerous short processes surrounding the cell body. Their electrophysiological properties were either passive, that is, no detectable voltage-dependent conductance, or complex, with Na+/K+ currents similar to those reported in the Ammon's horn astrocytes. We did not find any morphological correlate to the types of electrophysiological profile or dye coupling. Chelation of cytoplasmic calcium ([Ca2+]i) by BAPTA increased the incidence of detecting a low Na+) conductance and transient outward K+ currents. However, an inwardly rectifying K+ current (Kir), a hallmark of differentiated CA1/3 astrocytes, was not a representative K+-current in the complex dentate astrocytes, suggesting that these astrocytes could retain an immature form of K-currents. Dentate astrocytes may possess a distinct current profile that is different from those in CA1/3 Ammon's horn.
Collapse
Affiliation(s)
- Masako Isokawa
- Department of Physiology, University of Maryland, 655 W. Baltimore Street, Baltimore, Maryland 21201, USA.
| | | |
Collapse
|
15
|
Wu HQ, Rassoulpour A, Goodman JH, Scharfman HE, Bertram EH, Schwarcz R. Kynurenate and 7-chlorokynurenate formation in chronically epileptic rats. Epilepsia 2005; 46:1010-6. [PMID: 16026552 DOI: 10.1111/j.1528-1167.2005.67404.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE The tryptophan metabolite kynurenic acid (KYNA) and its synthetic derivative, 7-chlorokynurenic acid (7-Cl-KYNA), are antagonists of the glycine co-agonist ("glycine(B)") site of the N-methyl-D-aspartate (NMDA)-receptor. Both compounds have neuroprotective and anticonvulsive properties but do not readily penetrate the blood-brain barrier. However, KYNA and 7-Cl-KYNA can be formed in, and released from, astrocytes after the peripheral administration of their transportable precursors kynurenine and 4-chlorokynurenine, respectively. The present study was designed to examine these biosynthetic processes, as well as astrogliosis, in animals with spontaneously recurring seizures. METHODS The fate and formation of KYNA and 7-Cl-KYNA was studied in vivo (microdialysis) and in vitro (tissue slices) in rats exhibiting chronic seizure activity (pilocarpine model) and in appropriate controls. Neuronal loss and gliosis in these animals were examined immunohistochemically. RESULTS In vivo microdialysis revealed higher ambient extracellular KYNA levels and enhanced de novo formation of 7-Cl-KYNA in the entorhinal cortex and hippocampus in epileptic rats. Complementary studies in tissue slices showed increased neosynthesis of KYNA and 7-Cl-KYNA in the same two brain areas. Microscopic analysis revealed pronounced astrocytic reactions in entorhinal cortex and hippocampus in epileptic animals. CONCLUSIONS These results demonstrate that the epileptic brain can synthesize glycine(B) receptor antagonists in situ. Astrogliosis probably accounts for their enhanced production in chronically epileptic rats. These results bode well for the use of 4-chlorokynurenine in the treatment of chronic seizure disorders.
Collapse
Affiliation(s)
- Hui-Qiu Wu
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD 21228, U.S.A
| | | | | | | | | | | |
Collapse
|
16
|
Williamson A, Patrylo PR, Pan J, Spencer DD, Hetherington H. Correlations between granule cell physiology and bioenergetics in human temporal lobe epilepsy. ACTA ACUST UNITED AC 2005; 128:1199-208. [PMID: 15728655 DOI: 10.1093/brain/awh444] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Human temporal lobe epilepsy (TLE) is associated with bioenergetic abnormalities including decreased phosphocreatine (PCr) normalized to ATP. The physiological consequences of these metabolic alterations have not been established. We hypothesized that impaired bioenergetics would correlate with alterations in physiological functions under conditions that strongly activate neural metabolism. We correlated several physiological variables obtained from epileptic human dentate granule cells studied in slices with hippocampal PCr/ATP measured using in vivo magnetic resonance spectroscopy. The physiological variables included: the ability to fire multiple action potentials in response to single stimuli, the inhibitory postsynaptic potential (IPSP) conductance and the responses to a 10 Hz, 10 s stimulus train. We noted a significant negative correlation between the ability to fire multiple spikes in response to single synaptic stimulation and PCr/ATP (P < 0.03) and a positive correlation between the IPSP conductance and PCr/ATP (P < 0.05). Finally, there was a strong correlation between PCr/ATP and the recovery of the membrane potential following a stimulus train (P < 0.01), with low PCr/ATP being associated with prolonged recovery times. These data suggest that the bioenergetic impairment seen in this tissue is associated with specific changes in excitatory and inhibitory neuronal responses to synchronized synaptic inputs.
Collapse
Affiliation(s)
- Anne Williamson
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520-8082, USA.
| | | | | | | | | |
Collapse
|
17
|
Gabriel S, Njunting M, Pomper JK, Merschhemke M, Sanabria ERG, Eilers A, Kivi A, Zeller M, Meencke HJ, Cavalheiro EA, Heinemann U, Lehmann TN. Stimulus and potassium-induced epileptiform activity in the human dentate gyrus from patients with and without hippocampal sclerosis. J Neurosci 2004; 24:10416-30. [PMID: 15548657 PMCID: PMC6730304 DOI: 10.1523/jneurosci.2074-04.2004] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2003] [Revised: 08/28/2004] [Accepted: 10/02/2004] [Indexed: 11/21/2022] Open
Abstract
Hippocampal specimens resected to cure medically intractable temporal lobe epilepsy (TLE) provide a unique possibility to study functional consequences of morphological alterations. One intriguing alteration predominantly observed in cases of hippocampal sclerosis is an uncommon network of granule cells monosynaptically interconnected via aberrant supragranular mossy fibers. We investigated whether granule cell populations in slices from sclerotic and nonsclerotic hippocampi would develop ictaform activity when challenged by low-frequency hilar stimulation in the presence of elevated extracellular potassium concentration (10 and 12 mm) and whether the experimental activity differs according to the presence of aberrant mossy fibers. We found that ictaform activity could be evoked in slices from sclerotic and nonsclerotic hippocampi (27 of 40 slices, 14 of 20 patients; and 11 of 22 slices, 6 of 12 patients, respectively). However, the two patient groups differed with respect to the pattern of ictaform discharges and the potassium concentration mandatory for its induction. Seizure-like events were already induced with 10 mm K+. They exclusively occurred in slices from sclerotic hippocampi, of which 80% displayed stimulus-induced oscillatory population responses (250-300 Hz). In slices from nonsclerotic hippocampi, atypical negative field potential shifts were predominantly evoked with 12 mm K+. In both groups, the ictaform activity was sensitive to ionotropic glutamate receptor antagonists and lowering of [Ca2+]o. Our results show that, in granule cell populations of hippocampal slices from TLE patients, high K+-induced seizure-like activity and ictal spiking coincide with basic electrophysiological abnormalities, hippocampal sclerosis, and mossy fiber sprouting, suggesting that network reorganization could play a crucial role in determining type and threshold of such activity.
Collapse
Affiliation(s)
- Siegrun Gabriel
- Johannes Mueller Institute of Physiology, D-10117 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|