1
|
Hakimi Naeini S, Rajabi-Maham H, Hosseini A, Azizi V. Neuroprotective impact of glycitin on memory impairment in a pentylenetetrazol-induced chronic epileptic rat model: insights into hippocampal histology, oxidative stress, and inflammation. J Nat Med 2025; 79:59-72. [PMID: 39365539 DOI: 10.1007/s11418-024-01846-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/12/2024] [Indexed: 10/05/2024]
Abstract
Epilepsy, characterized by recurrent seizures, often accompanies neurocognitive impairments and is associated with increased oxidative stress and inflammation. This study investigates the possible neuroprotective properties of glycitin, a soy isoflavone, on memory impairment, its impact on oxidative stress responses, and inflammatory gene expression in a chronic epileptic rat model induced by pentylenetetrazol (PTZ). Glycitin was administered at varying doses to evaluate its potential neuroprotective impact on memory, oxidative stress, and inflammation in this model. Behavioural assessments, memory retention and recall capabilities, histopathological examinations, measurements of oxidative stress biomarkers, and molecular assessments were employed for comprehensive evaluation. The results demonstrated that glycitin significantly improved memory impairment and reduced oxidative stress in epileptic rats. Additionally, glycitin treatment decreased the expression of tumor necrosis factor-α (TNF-α) and nuclear factor kappa B (NF-κB), indicating its potential to modulate the inflammatory response associated with epilepsy. These observations underscore the potential of glycitin as a therapeutic candidate for mitigating memory impairments linked to chronic epilepsy due to its antioxidant and anti-inflammatory properties, offering insights into novel avenues for the development of targeted interventions aimed at preserving cognitive function and ameliorating oxidative damage and inflammation in epileptic conditions.
Collapse
Affiliation(s)
- Saghi Hakimi Naeini
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Hassan Rajabi-Maham
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Abdolkarim Hosseini
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Vahid Azizi
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
2
|
Cannabidiol anticonvulsant effect is mediated by the PI3Kγ pathway. Neuropharmacology 2020; 176:108156. [DOI: 10.1016/j.neuropharm.2020.108156] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/21/2022]
|
3
|
Islas-Espinoza AM, Campos-Rodriguez C, San Juan ER. Thalidomide protects against acute pentylenetetrazol and pilocarpine-induced seizures in mice. J Toxicol Sci 2018; 43:671-684. [PMID: 30405000 DOI: 10.2131/jts.43.671] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Thalidomide was originally developed to treat primary neurological and psychiatric diseases. There are reports of anticonvulsant effects of thalidomide in rats and antiepileptic effects in patients. Hence, thalidomide (100, 200 and 400 mg/kg) was herein administered to mice to evaluate possible protection against seizures induced by the systemic administration of neurotoxins: 10 mg/kg of 4-aminopyridine (4-AP), 90 mg/kg of pentylenetetrazol (PTZ), or 380 mg/kg of pilocarpine. The effect of an NO and COX inhibitor (7-NI and ibuprofen, respectively) was also examined. The results show that thalidomide (1) induces the typical sedative effects, (2) has no anticonvulsant effect in mice treated with 4-AP, and (3) has anticonvulsant effect (400 mg/kg) in mice treated with PTZ and pilocarpine. It was found that 7-NI has an anticonvulsant effect in the pilocarpine model and that thalidomide's effect is not enhanced by its presence. However, thalidomide (200 mg/kg) plus 7-NI or ibuprofen tend to have a toxic effect in PTZ model. On the other hand, the combination of thalidomide and 7-NI or ibuprofen protects against pilocarpine-induced seizures. In conclusion, thalidomide did not exert an anticonvulsant effect for clonic-tonic type convulsions (4-AP), but it did so for seizures induced by PTZ and pilocarpine (representing absence seizures and status epilepticus, respectively). NO and prostaglandins were involved in the convulsive process elicited by pilocarpine.
Collapse
Affiliation(s)
- Ana Mara Islas-Espinoza
- Physiology Department, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Mexico
| | - Carolina Campos-Rodriguez
- Physiology Department, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Mexico
| | - Eduardo Ramírez San Juan
- Physiology Department, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Mexico
| |
Collapse
|
4
|
Soukupová M, Binaschi A, Falcicchia C, Zucchini S, Roncon P, Palma E, Magri E, Grandi E, Simonato M. Impairment of GABA release in the hippocampus at the time of the first spontaneous seizure in the pilocarpine model of temporal lobe epilepsy. Exp Neurol 2014; 257:39-49. [PMID: 24768627 DOI: 10.1016/j.expneurol.2014.04.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/27/2014] [Accepted: 04/16/2014] [Indexed: 01/03/2023]
Abstract
The alterations in GABA release have not yet been systematically measured along the natural course of temporal lobe epilepsy. In this work, we analyzed GABA extracellular concentrations (using in vivo microdialysis under basal and high K(+)-evoked conditions) and loss of two GABA interneuron populations (parvalbumin and somatostatin neurons) in the ventral hippocampus at different time-points after pilocarpine-induced status epilepticus in the rat, i.e. during development and progression of epilepsy. We found that (i) during the latent period between the epileptogenic insult, status epilepticus, and the first spontaneous seizure, basal GABA outflow was reduced to about one third of control values while the number of parvalbumin-positive cells was reduced by about 50% and that of somatostatin-positive cells by about 25%; nonetheless, high K(+) stimulation increased extracellular GABA in a proportionally greater manner during latency than under control conditions; (ii) at the time of the first spontaneous seizure (i.e., when the diagnosis of epilepsy is made in humans) this increased responsiveness to stimulation disappeared, i.e. there was no longer any compensation for GABA cell loss; (iii) thereafter, this dysfunction remained constant until a late phase of the disease. These data suggest that a GABAergic hyper-responsiveness can compensate for GABA cell loss and protect from occurrence of seizures during latency, whereas impaired extracellular GABA levels can favor the occurrence of spontaneous recurrent seizures and the maintenance of an epileptic state.
Collapse
Affiliation(s)
- Marie Soukupová
- Department of Medical Sciences, Section of Pharmacology, Neuroscience Center, University of Ferrara, Italy; National Institute of Neuroscience, Italy.
| | - Anna Binaschi
- Department of Medical Sciences, Section of Pharmacology, Neuroscience Center, University of Ferrara, Italy; National Institute of Neuroscience, Italy
| | - Chiara Falcicchia
- Department of Medical Sciences, Section of Pharmacology, Neuroscience Center, University of Ferrara, Italy; National Institute of Neuroscience, Italy
| | - Silvia Zucchini
- Department of Medical Sciences, Section of Pharmacology, Neuroscience Center, University of Ferrara, Italy; National Institute of Neuroscience, Italy; Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, Italy
| | - Paolo Roncon
- Department of Medical Sciences, Section of Pharmacology, Neuroscience Center, University of Ferrara, Italy; National Institute of Neuroscience, Italy
| | - Eleonora Palma
- Department of Physiology and Pharmacology University of Roma "Sapienza", Italy; IRCCS San Raffaele Pisana, Roma, Italy
| | - Eros Magri
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, University of Ferrara, Italy
| | - Enrico Grandi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, University of Ferrara, Italy
| | - Michele Simonato
- Department of Medical Sciences, Section of Pharmacology, Neuroscience Center, University of Ferrara, Italy; National Institute of Neuroscience, Italy; Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, Italy
| |
Collapse
|
5
|
Noor NA, Aboul Ezz HS, Faraag AR, Khadrawy YA. Evaluation of the antiepileptic effect of curcumin and Nigella sativa oil in the pilocarpine model of epilepsy in comparison with valproate. Epilepsy Behav 2012; 24:199-206. [PMID: 22575751 DOI: 10.1016/j.yebeh.2012.03.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 03/21/2012] [Accepted: 03/23/2012] [Indexed: 10/28/2022]
Abstract
The present study aimed to investigate the effect of curcumin and Nigella sativa oil (NSO) on amino acid neurotransmitter alterations and the histological changes induced by pilocarpine in the hippocampus and cortex of rats. Epilepsy was induced by i.p. injection of pilocarpine, and the animals were left for 22 days to establish spontaneous recurrent seizures. They were then treated with curcumin, NSO or valproate for 21 days. Pilocarpine induced a significant increase in hippocampal aspartate and a significant decrease in glycine and taurine levels. In the cortex, a significant increase in aspartate, glutamate, GABA, glycine, and taurine levels was obtained after pilocarpine injection. Treatment of pilocarpinized rats with curcumin and valproate ameliorated most of the changes in amino acid concentrations and reduced the histopathological abnormalities induced by pilocarpine. N. sativa oil failed to improve the pilocarpine-induced abnormalities. This may explain the antiepileptic effect of curcumin and suggest its use as an anticonvulsant.
Collapse
Affiliation(s)
- Neveen A Noor
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt.
| | | | | | | |
Collapse
|
6
|
Effects of N(2-propylpentanoyl)urea on hippocampal amino acid neurotransmitters in spontaneous recurrent seizure rats. ASIAN BIOMED 2010. [DOI: 10.2478/abm-2010-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Background: N(2-propylpentanoyl) urea (VPU) is a new valproic acid (VPA) analog with higher anticonvulsant activity than its parent compound in various animal models including seizure acutely induced by pilocarpine. Objective: Investigate its effects on hippocampal amino acid neurotransmitters in spontaneous recurrent seizure (SRS) rats. Methods: Pilocarpine hydrochloride was used to induce status epilepticus (SE). Animals were visually observed for two hours/day for an episode of SRS for six weeks. Microdialysis experiment was performed to detect hippocampal amino acid neurotransmitters on those rats that developed SRS. Results: In comparison to normal rats, hippocampal glutamate, gamma-aminobutyric acid (GABA), and glycine, significantly increased in SRS rats. Occurrence of SRS in the faces of increased level of inhibitory neurotransmitters suggests the key role played by glutamate in the genesis and control of SRS. Based on the observation in pilocarpine-induced SE, the level of glutamate in SRS rats significantly decreased by a clinically effective anticonvulsant, VPA (300 and 600 mg/kg, i.p). Similar profile on hippocampal glutamate was also exhibited by VPU (50 and 100 mg/kg, i.p.). Conclusion: The possible role of VPU in controlling seizure in SRS rats and subsequently human temporal lobe epilepsy as VPA was suggested.
Collapse
|