1
|
Li H, Meng Q, Liu Y, Wu H, Dong Y, Ren Y, Zhang J, Du C, Dong S, Liu X, Zhang H. The value of ictal scalp EEG in focal epilepsies surgery: a retrospective analysis. Neurol Sci 2024; 45:5457-5464. [PMID: 38902569 DOI: 10.1007/s10072-024-07657-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
OBJECTIVE To describe the association between preoperative ictal scalp electroencephalogram (EEG) results and surgical outcomes in patients with focal epilepsies. METHODS The data of consecutive patients with focal epilepsies who received surgical treatments at our center from January 2012 to December 2021 were retrospectively analyzed. RESULTS Our data showed that 44.2% (322/729) of patients had ictal EEG recorded on video EEG monitoring during preoperative evaluation, of which 60.6% (195/322) had a concordant ictal EEG results. No significant difference of surgery outcomes between patients with and without ictal EEG was discovered. Among MRI-negative patients, those with concordant ictal EEG had a significantly better outcome than those without ictal EEG (75.7% vs. 43.8%, p = 0.024). Further logistic regression analysis showed that concordant ictal EEG was an independent predictor for a favorable outcome (OR = 4.430, 95%CI 1.175-16.694, p = 0.028). Among MRI-positive patients, those with extra-temporal lesions and discordant ictal EEG results had a worse outcome compared to those without an ictal EEG result (44.7% vs. 68.8%, p = 0.005). Further logistic regression analysis showed that discordant ictal EEG was an independent predictor of worse outcome (OR = 0.387, 95%CI 0.186-0.807, p = 0.011) in these patients. Furthermore, our data indicated that the number of seizures was not associated with the concordance rates of the ictal EEG, nor the surgical outcomes. CONCLUSIONS The value of ictal scalp EEG for epilepsy surgery varies widely among patients. A concordant ictal EEG predicts a good surgical outcome in MRI-negative patients, whereas a discordant ictal EEG predicts a poor postoperative outcome in lesional extratemporal lobe epilepsy.
Collapse
Affiliation(s)
- Huanfa Li
- Department of Neurosurgery, Comprehensive Epilepsy Center, The First Affiliated Hospital of Xi'an JiaoTong University, No.277, Yanta West Road, Xi'an, 710061, China
- Clinical Research Center for Refractory Epilepsy of Shaanxi Province, Xi'an, 710061, China
| | - Qiang Meng
- Department of Neurosurgery, Comprehensive Epilepsy Center, The First Affiliated Hospital of Xi'an JiaoTong University, No.277, Yanta West Road, Xi'an, 710061, China
- Clinical Research Center for Refractory Epilepsy of Shaanxi Province, Xi'an, 710061, China
| | - Yong Liu
- Department of Neurosurgery, Comprehensive Epilepsy Center, The First Affiliated Hospital of Xi'an JiaoTong University, No.277, Yanta West Road, Xi'an, 710061, China
- Clinical Research Center for Refractory Epilepsy of Shaanxi Province, Xi'an, 710061, China
| | - Hao Wu
- Department of Neurosurgery, Comprehensive Epilepsy Center, The First Affiliated Hospital of Xi'an JiaoTong University, No.277, Yanta West Road, Xi'an, 710061, China
- Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yicong Dong
- Department of Neurosurgery, Comprehensive Epilepsy Center, The First Affiliated Hospital of Xi'an JiaoTong University, No.277, Yanta West Road, Xi'an, 710061, China
- Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yutao Ren
- Department of Neurosurgery, Comprehensive Epilepsy Center, The First Affiliated Hospital of Xi'an JiaoTong University, No.277, Yanta West Road, Xi'an, 710061, China
| | - Jiale Zhang
- Department of Neurosurgery, Comprehensive Epilepsy Center, The First Affiliated Hospital of Xi'an JiaoTong University, No.277, Yanta West Road, Xi'an, 710061, China
| | - Changwang Du
- Department of Neurosurgery, Comprehensive Epilepsy Center, The First Affiliated Hospital of Xi'an JiaoTong University, No.277, Yanta West Road, Xi'an, 710061, China
- Clinical Research Center for Refractory Epilepsy of Shaanxi Province, Xi'an, 710061, China
| | - Shan Dong
- Department of Neurosurgery, Comprehensive Epilepsy Center, The First Affiliated Hospital of Xi'an JiaoTong University, No.277, Yanta West Road, Xi'an, 710061, China
- Clinical Research Center for Refractory Epilepsy of Shaanxi Province, Xi'an, 710061, China
| | - Xiaofang Liu
- Department of Neurosurgery, Comprehensive Epilepsy Center, The First Affiliated Hospital of Xi'an JiaoTong University, No.277, Yanta West Road, Xi'an, 710061, China
- Clinical Research Center for Refractory Epilepsy of Shaanxi Province, Xi'an, 710061, China
| | - Hua Zhang
- Department of Neurosurgery, Comprehensive Epilepsy Center, The First Affiliated Hospital of Xi'an JiaoTong University, No.277, Yanta West Road, Xi'an, 710061, China.
- Clinical Research Center for Refractory Epilepsy of Shaanxi Province, Xi'an, 710061, China.
- Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
2
|
Kang KW, Kim JH, Kim JM, Kim MK. Electroclinical Characteristics and 18F-Fluorodeoxyglucose Positron-Emission Tomography Findings of Familial Scotosensitivity. J Clin Neurol 2022; 18:717-719. [DOI: 10.3988/jcn.2022.18.6.717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Kyung Wook Kang
- Department of Neurology, Chonnam National University Medical School, Chonnam National University Hospital, Gwangju, Korea
| | - Ja-Hae Kim
- Department of Nuclear Medicine, Chonnam National University Medical School, Chonnam National University Hospital, Gwangju, Korea
| | - Jae-Myung Kim
- Department of Neurology, Chonnam National University Medical School, Chonnam National University Hospital, Gwangju, Korea
| | - Myeong-Kyu Kim
- Department of Neurology, Chonnam National University Medical School, Chonnam National University Hospital, Gwangju, Korea
| |
Collapse
|
3
|
Tatum WO, Mani J, Jin K, Halford JJ, Gloss D, Fahoum F, Maillard L, Mothersill I, Beniczky S. Minimum standards for inpatient long-term video-EEG monitoring: A clinical practice guideline of the international league against epilepsy and international federation of clinical neurophysiology. Clin Neurophysiol 2021; 134:111-128. [PMID: 34955428 DOI: 10.1016/j.clinph.2021.07.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The objective of this clinical practice guideline is to provide recommendations on the indications and minimum standards for inpatient long-term video-electroencephalographic monitoring (LTVEM). The Working Group of the International League Against Epilepsy and the International Federation of Clinical Neurophysiology develop guidelines aligned with the Epilepsy Guidelines Task Force. We reviewed published evidence using The Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) statement. We found limited high-level evidence aimed at specific aspects of diagnosis for LTVEM performed to evaluate patients with seizures and nonepileptic events (see Table S1). For classification of evidence, we used the Clinical Practice Guideline Process Manual of the American Academy of Neurology. We formulated recommendations for the indications, technical requirements, and essential practice elements of LTVEM to derive minimum standards used in the evaluation of patients with suspected epilepsy using GRADE (Grading of Recommendations, Assessment, Development, and Evaluation). Further research is needed to obtain evidence about long-term outcome effects of LTVEM and establish its clinical utility.
Collapse
Affiliation(s)
- William O Tatum
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA.
| | - Jayanti Mani
- Department of Neurology, Kokilaben Dhirubai Ambani Hospital, Mumbai, India
| | - Kazutaka Jin
- Department of Epileptology, Tohoku University Graduate School of Medicine, Japan
| | - Jonathan J Halford
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA.
| | - David Gloss
- Department of Neurology, Charleston Area Medical Center, Charleston, WV, USA
| | - Firas Fahoum
- Department of Neurology, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Louis Maillard
- Department of Neurology, University of Nancy, UMR7039, University of Lorraine, France.
| | - Ian Mothersill
- Department of Clinical Neurophysiology, Swiss Epilepsy Center, Zurich Switzerland.
| | - Sandor Beniczky
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark; Danish Epilepsy Center, Dianalund, Denmark.
| |
Collapse
|
4
|
Tatum WO, Mani J, Jin K, Halford JJ, Gloss D, Fahoum F, Maillard L, Mothersill I, Beniczky S. Minimum standards for inpatient long-term video-electroencephalographic monitoring: A clinical practice guideline of the International League Against Epilepsy and International Federation of Clinical Neurophysiology. Epilepsia 2021; 63:290-315. [PMID: 34897662 DOI: 10.1111/epi.16977] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 01/02/2023]
Abstract
The objective of this clinical practice guideline is to provide recommendations on the indications and minimum standards for inpatient long-term video-electroencephalographic monitoring (LTVEM). The Working Group of the International League Against Epilepsy and the International Federation of Clinical Neurophysiology develop guidelines aligned with the Epilepsy Guidelines Task Force. We reviewed published evidence using the PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analysis) statement. We found limited high-level evidence aimed at specific aspects of diagnosis for LTVEM performed to evaluate patients with seizures and nonepileptic events. For classification of evidence, we used the Clinical Practice Guideline Process Manual of the American Academy of Neurology. We formulated recommendations for the indications, technical requirements, and essential practice elements of LTVEM to derive minimum standards used in the evaluation of patients with suspected epilepsy using GRADE (Grading of Recommendations Assessment, Development, and Evaluation). Further research is needed to obtain evidence about long-term outcome effects of LTVEM and to establish its clinical utility.
Collapse
Affiliation(s)
- William O Tatum
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| | - Jayanti Mani
- Department of Neurology, Kokilaben Dhirubai Ambani Hospital, Mumbai, India
| | - Kazutaka Jin
- Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Jonathan J Halford
- Department of Neurology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - David Gloss
- Department of Neurology, Charleston Area Medical Center, Charleston, West Virginia, USA
| | - Firas Fahoum
- Department of Neurology, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Louis Maillard
- Department of Neurology, University of Nancy, UMR7039, University of Lorraine, Nancy, France
| | - Ian Mothersill
- Department of Clinical Neurophysiology, Swiss Epilepsy Center, Zurich,, Switzerland
| | - Sandor Beniczky
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark.,Danish Epilepsy Center, Dianalund, Denmark
| |
Collapse
|
5
|
Chaudhary UJ, Centeno M, Carmichael DW, Diehl B, Walker MC, Duncan JS, Lemieux L. Mapping Epileptic Networks Using Simultaneous Intracranial EEG-fMRI. Front Neurol 2021; 12:693504. [PMID: 34621233 PMCID: PMC8490636 DOI: 10.3389/fneur.2021.693504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/20/2021] [Indexed: 11/29/2022] Open
Abstract
Background: Potentially curative epilepsy surgery can be offered if a single, discrete epileptogenic zone (EZ) can be identified. For individuals in whom there is no clear concordance between clinical localization, scalp EEG, and imaging data, intracranial EEG (icEEG) may be needed to confirm a predefined hypothesis regarding irritative zone (IZ), seizure onset zone (SOZ), and EZ prior to surgery. However, icEEG has limited spatial sampling and may fail to reveal the full extent of epileptogenic network if predefined hypothesis is not correct. Simultaneous icEEG-fMRI has been safely acquired in humans and allows exploration of neuronal activity at the whole-brain level related to interictal epileptiform discharges (IED) captured intracranially. Methods: We report icEEG-fMRI in eight patients with refractory focal epilepsy who had resective surgery and good postsurgical outcome. Surgical resection volume in seizure-free patients post-surgically reflects confirmed identification of the EZ. IEDs on icEEG were classified according to their topographic distribution and localization (Focal, Regional, Widespread, and Non-contiguous). We also divided IEDs by their location within the surgical resection volume [primary IZ (IZ1) IED] or outside [secondary IZ (IZ2) IED]. The distribution of fMRI blood oxygen level-dependent (BOLD) changes associated with individual IED classes were assessed over the whole brain using a general linear model. The concordance of resulting BOLD map was evaluated by comparing localization of BOLD clusters with surgical resection volume. Additionally, we compared the concordance of BOLD maps and presence of BOLD clusters in remote brain areas: precuneus, cuneus, cingulate, medial frontal, and thalamus for different IED classes. Results: A total of 38 different topographic IED classes were identified across the 8 patients: Focal (22) and non-focal (16, Regional = 9, Widespread = 2, Non-contiguous = 5). Twenty-nine IEDs originated from IZ1 and 9 from IZ2. All IED classes were associated with BOLD changes. BOLD maps were concordant with the surgical resection volume for 27/38 (71%) IED classes, showing statistical global maximum BOLD cluster or another cluster in the surgical resection volume. The concordance of BOLD maps with surgical resection volume was greater (p < 0.05) for non-focal (87.5%, 14/16) as compared to Focal (59%, 13/22) IED classes. Additionally, BOLD clusters in remote cortical and deep brain areas were present in 84% (32/38) of BOLD maps, more commonly (15/16; 93%) for non-focal IED-related BOLD maps. Conclusions: Simultaneous icEEG-fMRI can reveal BOLD changes at the whole-brain level for a wide range of IEDs on icEEG. BOLD clusters within surgical resection volume and remote brain areas were more commonly seen for non-focal IED classes, suggesting that a wider hemodynamic network is at play.
Collapse
Affiliation(s)
- Umair J Chaudhary
- Department of Clinical and Experimental Epilepsy, University College London (UCL) Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, United Kingdom.,Magnetic Resonance Imaging (MRI) Unit, Epilepsy Society, Chalfont St. Peter, United Kingdom.,Neurology Department, University Hospital Coventry and Warwickshire, Coventry, United Kingdom
| | - Maria Centeno
- Department of Clinical and Experimental Epilepsy, University College London (UCL) Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, United Kingdom.,Magnetic Resonance Imaging (MRI) Unit, Epilepsy Society, Chalfont St. Peter, United Kingdom.,Epilepsy Unit, Neurology Department, Hospital Clinic Barcelona, Barcelona, Spain
| | - David W Carmichael
- Imaging and Biophysics Unit, University College London (UCL) Institute of Child Health, London, United Kingdom
| | - Beate Diehl
- Department of Clinical and Experimental Epilepsy, University College London (UCL) Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, United Kingdom.,Magnetic Resonance Imaging (MRI) Unit, Epilepsy Society, Chalfont St. Peter, United Kingdom.,Clinical Neurophysiology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Matthew C Walker
- Department of Clinical and Experimental Epilepsy, University College London (UCL) Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, United Kingdom.,Magnetic Resonance Imaging (MRI) Unit, Epilepsy Society, Chalfont St. Peter, United Kingdom
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, University College London (UCL) Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, United Kingdom.,Magnetic Resonance Imaging (MRI) Unit, Epilepsy Society, Chalfont St. Peter, United Kingdom
| | - Louis Lemieux
- Department of Clinical and Experimental Epilepsy, University College London (UCL) Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, United Kingdom.,Magnetic Resonance Imaging (MRI) Unit, Epilepsy Society, Chalfont St. Peter, United Kingdom
| |
Collapse
|
6
|
van Mierlo P, Vorderwülbecke BJ, Staljanssens W, Seeck M, Vulliémoz S. Ictal EEG source localization in focal epilepsy: Review and future perspectives. Clin Neurophysiol 2020; 131:2600-2616. [PMID: 32927216 DOI: 10.1016/j.clinph.2020.08.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/12/2020] [Accepted: 08/04/2020] [Indexed: 11/25/2022]
Abstract
Electroencephalographic (EEG) source imaging localizes the generators of neural activity in the brain. During presurgical epilepsy evaluation, EEG source imaging of interictal epileptiform discharges is an established tool to estimate the irritative zone. However, the origin of interictal activity can be partly or fully discordant with the origin of seizures. Therefore, source imaging based on ictal EEG data to determine the seizure onset zone can provide precious clinical information. In this descriptive review, we address the importance of localizing the seizure onset zone based on noninvasive EEG recordings as a complementary analysis that might reduce the burden of the presurgical evaluation. We identify three major challenges (low signal-to-noise ratio of the ictal EEG data, spread of ictal activity in the brain, and validation of the developed methods) and discuss practical solutions. We provide an extensive overview of the existing clinical studies to illustrate the potential clinical utility of EEG-based localization of the seizure onset zone. Finally, we conclude with future perspectives and the needs for translating ictal EEG source imaging into clinical practice.
Collapse
Affiliation(s)
- Pieter van Mierlo
- Medical Image and Signal Processing Group, Department of Electronics and Information Systems, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium.
| | - Bernd J Vorderwülbecke
- EEG and Epilepsy Unit, University Hospitals and Faculty of Medicine Geneva, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland; Department of Neurology, Epilepsy-Center Berlin-Brandenburg, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | - Willeke Staljanssens
- Medical Image and Signal Processing Group, Department of Electronics and Information Systems, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Margitta Seeck
- EEG and Epilepsy Unit, University Hospitals and Faculty of Medicine Geneva, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland.
| | - Serge Vulliémoz
- EEG and Epilepsy Unit, University Hospitals and Faculty of Medicine Geneva, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland.
| |
Collapse
|
7
|
Kang X, Boly M, Findlay G, Jones B, Gjini K, Maganti R, Struck AF. Quantitative spatio-temporal characterization of epileptic spikes using high density EEG: Differences between NREM sleep and REM sleep. Sci Rep 2020; 10:1673. [PMID: 32015406 PMCID: PMC6997449 DOI: 10.1038/s41598-020-58612-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/17/2020] [Indexed: 12/13/2022] Open
Abstract
In this study, we applied high-density EEG recordings (HD-EEG) to quantitatively characterize the fine-grained spatiotemporal distribution of inter-ictal epileptiform discharges (IEDs) across different sleep stages. We quantified differences in spatial extent and duration of IEDs at the scalp and cortical levels using HD-EEG source-localization, during non-rapid eye movement (NREM) sleep and rapid eye movement (REM) sleep, in six medication-refractory focal epilepsy patients during epilepsy monitoring unit admission. Statistical analyses were performed at single subject level and group level across different sleep stages for duration and distribution of IEDs. Tests were corrected for multiple comparisons across all channels and time points. Compared to NREM sleep, IEDs during REM sleep were of significantly shorter duration and spatially more restricted. Compared to NREM sleep, IEDs location in REM sleep also showed a higher concordance with electrographic ictal onset zone from scalp EEG recording. This study supports the localizing value of REM IEDs over NREM IEDs and suggests that HD-EEG may be of clinical utility in epilepsy surgery work-up.
Collapse
Affiliation(s)
- Xuan Kang
- University of Wisconsin-Madison Department of Neurology, Madison, Wisconsin, 53705, USA
| | - Melanie Boly
- University of Wisconsin-Madison Department of Neurology, Madison, Wisconsin, 53705, USA.,University of Wisconsin-Madison Department of Psychiatry, Madison, Wisconsin, 53705, USA
| | - Graham Findlay
- University of Wisconsin-Madison Department of Neurology, Madison, Wisconsin, 53705, USA.,University of Wisconsin-Madison Department of Psychiatry, Madison, Wisconsin, 53705, USA
| | - Benjamin Jones
- University of Wisconsin-Madison Department of Neurology, Madison, Wisconsin, 53705, USA.,University of Wisconsin-Madison Department of Psychiatry, Madison, Wisconsin, 53705, USA
| | - Klevest Gjini
- University of Wisconsin-Madison Department of Neurology, Madison, Wisconsin, 53705, USA
| | - Rama Maganti
- University of Wisconsin-Madison Department of Neurology, Madison, Wisconsin, 53705, USA
| | - Aaron F Struck
- University of Wisconsin-Madison Department of Neurology, Madison, Wisconsin, 53705, USA.
| |
Collapse
|
8
|
Feyissa AM, Britton JW, Van Gompel J, Lagerlund TL, So E, Wong-Kisiel LC, Cascino GC, Brinkman BH, Nelson CL, Watson R, Worrell GA. High density scalp EEG in frontal lobe epilepsy. Epilepsy Res 2017; 129:157-161. [PMID: 28073096 DOI: 10.1016/j.eplepsyres.2016.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 12/27/2016] [Accepted: 12/31/2016] [Indexed: 10/20/2022]
Abstract
PURPOSE Localization of seizures in frontal lobe epilepsy using the 10-20 system scalp EEG is often challenging because neocortical seizure can spread rapidly, significant muscle artifact, and the suboptimal spatial resolution for seizure generators involving mesial frontal lobe cortex. Our aim in this study was to determine the value of visual interpretation of 76 channel high density EEG (hdEEG) monitoring (10-10 system) in patients with suspected frontal lobe epilepsy, and to evaluate concordance with MRI, subtraction ictal SPECT co-registered to MRI (SISCOM), conventional EEG, and intracranial EEG (iEEG). METHODS We performed a retrospective cohort study of 14 consecutive patients who underwent hdEEG monitoring for suspected frontal lobe seizures. The gold standard for localization was considered to be iEEG. Concordance of hdEEG findings with MRI, subtraction ictal SPECT co-registered to MRI (SISCOM), conventional 10-20 EEG, and iEEG as well as correlation of hdEEG localization with surgical outcome were examined. RESULTS hdEEG localization was concordant with iEEG in 12/14 and was superior to conventional EEG 3/14 (p<0.01) and SISCOM 3/12 (p<0.01). hdEEG correctly lateralized seizure onset in 14/14 cases, compared to 9/14 (p=0.04) cases with conventional EEG. Seven patients underwent surgical resection, of whom five were seizure free. CONCLUSIONS hdEEG monitoring should be considered in patients with suspected frontal epilepsy requiring localization of epileptogenic brain. hdEEG may assist in developing a hypothesis for iEEG monitoring and could potentially augment EEG source localization.
Collapse
Affiliation(s)
- Anteneh M Feyissa
- Department of Neurology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, United States.
| | - Jeffrey W Britton
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, United States.
| | - Jamie Van Gompel
- Departments of Neurological Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, United States.
| | - Terrance L Lagerlund
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, United States.
| | - Elson So
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, United States.
| | - Lilly C Wong-Kisiel
- Division of Child and Adolescent Neurology, Mayo Clinic Children's Center, 200 First Street SW, Rochester, MN, 55905, United States.
| | - Gregory C Cascino
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, United States.
| | - Benjamin H Brinkman
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, United States.
| | - Cindy L Nelson
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, United States.
| | - Robert Watson
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, United States.
| | - Gregory A Worrell
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, United States.
| |
Collapse
|
9
|
Liu B, Li H, Gao C, Zhang Y, Wang C, Wu H, Dong S, Tao Y, Zhang H. Occurrence predictors of the temporal interictal epileptic discharges in epilepsy patients with extratemporal lesions: A prospective cohort study. Int J Surg 2016; 31:52-7. [PMID: 27216454 DOI: 10.1016/j.ijsu.2016.05.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 04/30/2016] [Accepted: 05/14/2016] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Electrical kindling models of epilepsy suggest that medial temporal structures are more prone to be irritated. The aim of this study is to investigate the occurrence rate of temporal interictal epileptic discharges (TIEDs) in the epilepsy patients with extratemporal lesions (ETLs), and to determine the predictive factors for TIEDs in this cohort. METHODS Totally 221 patients were admitted for presurgical evaluation, and focal ETL were found in all of them by MRI examination. The occurrence rates of TIEDs in several groups with different brain lobe locations, durations; of epilepsy, seizure frequencies, and onset ages stages were assessed. We also evaluated the surgical outcome of; resection in this cohort. RESULTS The total occurrence rate of TIEDs in this cohort was 29.9%. The occurrence rate of TIEDs in the patients with longer durations (>5 or 10 years) was significantly higher than those with shorter duration (<1 year). These; patients with lower seizure frequency (<1 seizure/month) had a significantly decreased incidence of TIEDs; compared with those with higher frequency (>1 seizure/month or week). In the terms of the brain lobe locations; and age at onset, there were no differences between the groups. Furthermore, there were no differences in terms of the surgical outcomes between the patients with TIEDs and other patients in this series. CONCLUSIONS TIEDs were frequently recorded in these patients with ETLs, and the predictive factors for TIEDs included the epilepsy duration and seizure frequency. SIGNIFICANCE This study is instrumental for the presurgical EEG interpretationand the counseling of these ETLs patients considered for epilepsy surgery.
Collapse
Affiliation(s)
- Bei Liu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Huanfa Li
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Chen Gao
- Department of Neurosurgery, AnNing Branch Hospital, Lanzhou General Hospital, Lanzhou Command, Lanzhou, Gansu Province, China
| | - Yu Zhang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Chao Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Hao Wu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Shan Dong
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Ye Tao
- Department of Ophthalmology, General Hospital of Chinese PLA, Ophthalmology & Visual Science Key Lab of PLA, Beijing, China.
| | - Hua Zhang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China.
| |
Collapse
|
10
|
Pellegrino G, Hedrich T, Chowdhury R, Hall JA, Lina JM, Dubeau F, Kobayashi E, Grova C. Source localization of the seizure onset zone from ictal EEG/MEG data. Hum Brain Mapp 2016; 37:2528-46. [PMID: 27059157 DOI: 10.1002/hbm.23191] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 03/07/2016] [Accepted: 03/10/2016] [Indexed: 11/08/2022] Open
Abstract
INTRODUCTION Surgical treatment of drug-resistant epilepsy relies on the identification of the seizure onset zone (SOZ) and often requires intracranial EEG (iEEG). We have developed a new approach for non-invasive magnetic and electric source imaging of the SOZ (MSI-SOZ and ESI-SOZ) from ictal magnetoencephalography (MEG) and EEG recordings, using wavelet-based Maximum Entropy on the Mean (wMEM) method. We compared the performance of MSI-SOZ and ESI-SOZ with interictal spike source localization (MSI-spikes and ESI-spikes) and clinical localization of the SOZ (i.e., based on iEEG or lesion topography, denoted as clinical-SOZ). METHODS A total of 46 MEG or EEG seizures from 13 patients were analyzed. wMEM was applied around seizure onset, centered on the frequency band showing the strongest power change. Principal component analysis applied to spatiotemporal reconstructed wMEM sources (0.4-1 s around seizure onset) identified the main spatial pattern of ictal oscillations. Qualitative sublobar concordance and quantitative measures of distance and spatial overlaps were estimated to compare MSI/ESI-SOZ with MSI/ESI-Spikes and clinical-SOZ. RESULTS MSI/ESI-SOZ were concordant with clinical-SOZ in 81% of seizures (MSI 90%, ESI 64%). MSI-SOZ was more accurate and identified sources closer to the clinical-SOZ (P = 0.012) and to MSI-Spikes (P = 0.040) as compared with ESI-SOZ. MSI/ESI-SOZ and MSI/ESI-Spikes did not differ in terms of concordance and distance from the clinical-SOZ. CONCLUSIONS wMEM allows non-invasive localization of the SOZ from ictal MEG and EEG. MSI-SOZ performs better than ESI-SOZ. MSI/ESI-SOZ can provide important additional information to MSI/ESI-Spikes during presurgical evaluation. Hum Brain Mapp 37:2528-2546, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Giovanni Pellegrino
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montreal, Québec, Canada.,Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Tanguy Hedrich
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montreal, Québec, Canada
| | - Rasheda Chowdhury
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montreal, Québec, Canada
| | - Jeffery A Hall
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Jean-Marc Lina
- Département de Génie Electrique, École de Technologie Supérieure, Montreal, Québec, Canada.,Centre De Recherches En Mathématiques, Montreal, Québec, Canada.,Centre D'etudes Avancées En Médecine Du Sommeil, Centre De Recherche De L'hôpital Sacré-Coeur De Montréal, Montreal, Québec, Canada
| | - Francois Dubeau
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Eliane Kobayashi
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Christophe Grova
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montreal, Québec, Canada.,Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada.,Centre De Recherches En Mathématiques, Montreal, Québec, Canada.,Physics Department and PERFORM Centre, Concordia University, Montreal, Québec, Canada
| |
Collapse
|
11
|
Lee RW, Mandrekar J, Worrell GA, Cascino GD, Wetjen NM, Meyer FB, Wirrell EC, Marsh WR, So E. Factors contributing to the yield of asymmetric bilateral implantation of intracranial electrodes. Epilepsia 2014; 55:1620-5. [PMID: 25196143 DOI: 10.1111/epi.12766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2014] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To determine the outcome of implanting fewer electrodes over the hemisphere with less supporting presurgical localizing data. METHODS We retrospectively reviewed our epilepsy surgery database at Mayo Clinic, Rochester, Minnesota, between January 1, 1999, and December 31, 2011, to identify patients who had an asymmetric number of electrode contacts implanted in each hemisphere for seizure localization. We scored each presurgical noninvasive data point (0, 0.5, or 1) to predict the likelihood of identifying seizure onset in the hemisphere with fewer intracranial electrode contacts (HFEC). An aggregate score was obtained for each patient. RESULTS Thirteen (37%) of 35 patients had HFEC-onset seizures on intracranial electroencephalography (iEEG). The following factors predicted HFEC-onset seizures: (1) temporal lobe epilepsy (p = 0.02); (2) interictal scalp electroencephalographic discharges at the HFEC (p = 0.04); and (3) both interictal and ictal scalp EEG discharges at the HFEC (p = 0.01). The median (range) aggregate score was 2 (1-3) for patients with HFEC-onset seizures recorded on iEEG and 1 (0-3) for patients without HFEC-onset seizures (p = 0.001). Using this scoring model, the odds ratio of identifying HFEC-onset seizures on iEEG was 6.4 for each one-point increment in the aggregate score. The area under the receiver operating characteristic curve for this model was 0.84, suggesting excellent ability of the aggregate score to discriminate between patients with and without HFEC-onset seizures on iEEG. SIGNIFICANCE Implanting electrodes on the basis of limited supporting presurgical data may be useful in selected patients, especially those with temporal lobe epilepsy, interictal scalp discharges involving the HFEC, or both interictal and ictal scalp discharges involving the HFEC. In addition, our proposed scoring system may be helpful in selecting patients with complicated epilepsy for implantation of an asymmetric number of intracranial electrodes in the hemispheres.
Collapse
Affiliation(s)
- Ricky W Lee
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, U.S.A
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Gavaret M, Badier JM, Bartolomei F, Bénar CG, Chauvel P. MEG and EEG Sensitivity in a Case of Medial Occipital Epilepsy. Brain Topogr 2013; 27:192-6. [DOI: 10.1007/s10548-013-0317-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 08/31/2013] [Indexed: 11/24/2022]
|
13
|
Chaudhary UJ, Carmichael DW, Rodionov R, Thornton RC, Bartlett P, Vulliemoz S, Micallef C, McEvoy AW, Diehl B, Walker MC, Duncan JS, Lemieux L. Mapping preictal and ictal haemodynamic networks using video-electroencephalography and functional imaging. ACTA ACUST UNITED AC 2013; 135:3645-63. [PMID: 23250884 DOI: 10.1093/brain/aws302] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Ictal patterns on scalp-electroencephalography are often visible only after propagation, therefore rendering localization of the seizure onset zone challenging. We hypothesized that mapping haemodynamic changes before and during seizures using simultaneous video-electroencephalography and functional imaging will improve the localization of the seizure onset zone. Fifty-five patients with ≥2 refractory focal seizures/day, and who had undergone long-term video-electroencephalography monitoring were included in the study. 'Preictal' (30 s immediately preceding the electrographic seizure onset) and ictal phases, 'ictal-onset'; 'ictalestablished' and 'late ictal', were defined based on the evolution of the electrographic pattern and clinical semiology. The functional imaging data were analysed using statistical parametric mapping to map ictal phase-related haemodynamic changes consistent across seizures. The resulting haemodynamic maps were overlaid on co-registered anatomical scans, and the spatial concordance with the presumed and invasively defined seizure onset zone was determined. Twenty patients had typical seizures during functional imaging. Seizures were identified on video-electroencephalography in 15 of 20, on electroencephalography alone in two and on video alone in three patients. All patients showed significant ictal-related haemodynamic changes. In the six cases that underwent invasive evaluation, the ictal-onset phase-related maps had a degree of concordance with the presumed seizure onset zone for all patients. The most statistically significant haemodynamic cluster within the presumed seizure onset zone was between 1.1 and 3.5 cm from the invasively defined seizure onset zone, which was resected in two of three patients undergoing surgery (Class I post-surgical outcome) and was not resected in one patient (Class III post-surgical outcome). In the remaining 14 cases, the ictal-onset phase-related maps had a degree of concordance with the presumed seizure onset zone in six of eight patients with structural-lesions and five of six non-lesional patients. The most statistically significant haemodynamic cluster was localizable at sub-lobar level within the presumed seizure onset zone in six patients. The degree of concordance of haemodynamic maps was significantly better (P < 0.05) for the ictal-onset phase [entirely concordant/concordant plus (13/20; 65%) + some concordance (4/20; 20%) = 17/20; 85%] than ictal-established [entirely concordant/concordant plus (5/13; 38%) + some concordance (4/13; 31%) = 9/13; 69%] and late ictal [concordant plus (1/9; 11%) + some concordance (4/9; 44%) = 5/9; 55%] phases. Ictal propagation-related haemodynamic changes were also seen in symptomatogenic areas (9/20; 45%) and the default mode network (13/20; 65%). A common pattern of preictal changes was seen in 15 patients, starting between 98 and 14 s before electrographic seizure onset, and the maps had a degree of concordance with the presumed seizure onset zone in 10 patients. In conclusion, preictal and ictal haemodynamic changes in refractory focal seizures can non-invasively localize seizure onset at sub-lobar/gyral level when ictal scalp-electroencephalography is not helpful.
Collapse
|