1
|
Erickson JD, Kyllo T, Wulff H. Ca 2+-regulated expression of high affinity methylaminoisobutryic acid transport in hippocampal neurons inhibited by riluzole and novel neuroprotective aminothiazoles. Curr Res Physiol 2023; 6:100109. [PMID: 38107787 PMCID: PMC10724208 DOI: 10.1016/j.crphys.2023.100109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 12/19/2023] Open
Abstract
High affinity methylaminoisobutyric acid(MeAIB)/glutamine(Gln) transport activity regulated by neuronal firing occurs at the plasma membrane in mature rat hippocampal neuron-enriched cultures. Spontaneous Ca2+-regulated transport activity was similarly inhibited by riluzole, a benzothiazole anticonvulsant agent, and by novel naphthalenyl substituted aminothiazole derivatives such as SKA-378. Here, we report that spontaneous transport activity is stimulated by 4-aminopyridine (4-AP) and that phorbol-myristate acetate (PMA) increases high K+ stimulated transport activity that is inhibited by staurosporine. 4-AP-stimulated spontaneous and PMA-stimulated high K+-induced transport is not present at 7 days in vitro (DIV) and is maximal by DIV∼21. The relative affinity for MeAIB is similar for spontaneous and high K+-stimulated transport (Km ∼ 50 μM) suggesting that a single transporter is involved. While riluzole and SKA-378 inhibit spontaneous transport with equal potency (IC50 ∼ 1 μM), they exhibit decreased (∼3-5 X) potency for 4-AP-stimulated spontaneous transport. Interestingly, high K+-stimulated MeAIB transport displays lower and differential sensitivity to the two compounds. SKA-378-related halogenated derivatives of SKA-75 (SKA-219, SKA-377 and SKA-375) preferentially inhibit high K+-induced expression of MeAIB transport activity at the plasma membrane (IC50 < 25 μM), compared to SKA-75 and riluzole (IC50 > 100 μM). Ca2+-dependent spontaneous and high K+-stimulated MeAIB transport activity is blocked by ω-conotoxin MVIIC, ω-agatoxin IVA, ω-agatoxin TK (IC50 ∼ 500 nM) or cadmium ion (IC50 ∼ 20 μM) demonstrating that P/Q-type CaV channels that are required for activity-regulated presynaptic vesicular glutamate (Glu) release are also required for high-affinity MeAIB transport expression at the plasma membrane. We suggest that neural activity driven and Ca2+ dependent trafficking of the high affinity MeAIB transporter to the plasma membrane is a unique target to understand mechanisms of Glu/Gln recycling in synapses and acute neuroprotection against excitotoxic presynaptic Glu induced neural injury.
Collapse
Affiliation(s)
- Jeffrey D. Erickson
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health-New Orleans, New Orleans, LA, USA
| | - Thomas Kyllo
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health-New Orleans, New Orleans, LA, USA
| | - Heike Wulff
- Department of Pharmacology, School of Medicine, University of California-Davis, Davis, CA, USA
| |
Collapse
|
2
|
Liu T, Ren S, Sun C, Zhao P, Wang H. Glutaminolysis and peripheral CD4 + T cell differentiation: from mechanism to intervention strategy. Front Immunol 2023; 14:1221530. [PMID: 37545506 PMCID: PMC10401425 DOI: 10.3389/fimmu.2023.1221530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/29/2023] [Indexed: 08/08/2023] Open
Abstract
To maintain the body's regular immune system, CD4+ T cell homeostasis is crucial, particularly T helper (Th1, Th17) cells and T regulatory (Treg) cells. Abnormally differentiated peripheral CD4+ T cells are responsible for the occurrence and development of numerous diseases, including autoimmune diseases, transplantation rejection, and irritability. Searching for an effective interventional approach to control this abnormal differentiation is therefore especially important. As immunometabolism progressed, the inherent metabolic factors underlying the immune cell differentiation have gradually come to light. Mounting number of studies have revealed that glutaminolysis plays an indelible role in the differentiation of CD4+ T cells. Besides, alterations in the glutaminolysis can also lead to changes in the fate of peripheral CD4+ T cells. All of this indicate that the glutaminolysis pathway has excellent potential for interventional regulation of CD4+ T cells differentiation. Here, we summarized the process by which glutaminolysis regulates the fate of CD4+ T cells during differentiation and further investigated how to reshape abnormal CD4+ T cell differentiation by targeting glutaminolysis.
Collapse
Affiliation(s)
- Tong Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Shaohua Ren
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Chenglu Sun
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Pengyu Zhao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| |
Collapse
|
3
|
Riluzole and novel naphthalenyl substituted aminothiazole derivatives prevent acute neural excitotoxic injury in a rat model of temporal lobe epilepsy. Neuropharmacology 2023; 224:109349. [PMID: 36436594 PMCID: PMC9843824 DOI: 10.1016/j.neuropharm.2022.109349] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/07/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022]
Abstract
Epileptogenic seizures, or status epilepticus (SE), leads to excitotoxic injury in hippocampal and limbic neurons in the kainic acid (KA) animal model of temporal lobe epilepsy (TLE). Here, we have further characterized neural activity regulated methylaminoisobutryic acid (MeAIB)/glutamine transport activity in mature rat hippocampal neurons in vitro that is inhibited by riluzole (IC50 = 1 μM), an anti-convulsant benzothiazole agent. We screened a library of riluzole derivatives and identified SKA-41 followed by a second screen and synthesized several novel chlorinated aminothiazoles (SKA-377, SKA-378, SKA-379) that are also potent MeAIB transport inhibitors in vitro, and brain penetrant following systemic administration. When administered before KA, SKA-378 did not prevent seizures but still protected the hippocampus and several other limbic areas against SE-induced neurodegeneration at 3d. When SKA-377 - 379, (30 mg/kg) were administered after KA-induced SE, acute neural injury in the CA3, CA1 and CA4/hilus was also largely attenuated. Riluzole (10 mg/kg) blocks acute neural injury. Kinetic analysis of SKA-378 and riluzoles' blockade of Ca2+-regulated MeAIB transport in neurons in vitro indicates that inhibition occurs via a non-competitive, indirect mechanism. Sodium channel NaV1.6 antagonism blocks neural activity regulated MeAIB/Gln transport in vitro (IC50 = 60 nM) and SKA-378 is the most potent inhibitor of NaV1.6 (IC50 = 28 μM) compared to NaV1.2 (IC50 = 118 μM) in heterologous cells. However, pharmacokinetic analysis suggests that sodium channel blockade may not be the predominant mechanism of neuroprotection here. Riluzole and our novel aminothiazoles are agents that attenuate acute neural hippocampal injury following KA-induced SE and may help to understand mechanisms involved in the progression of epileptic disease.
Collapse
|
4
|
Dhaher R, Chen EC, Perez E, Rapuano A, Sandhu MRS, Gruenbaum SE, Deshpande K, Dai F, Zaveri HP, Eid T. Oral glutamine supplementation increases seizure severity in a rodent model of mesial temporal lobe epilepsy. Nutr Neurosci 2022; 25:64-69. [PMID: 31900092 PMCID: PMC8970572 DOI: 10.1080/1028415x.2019.1708568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background: Glutamine synthetase (GS) is the only enzyme known to synthesize significant amounts of glutamine in mammals, and loss of GS in the hippocampus has been implicated in the pathophysiology of medication refractory mesial temporal lobe epilepsy (MTLE). Moreover, loss-of-function mutations of the GS gene causes severe epileptic encephalopathy, and supplementation with glutamine has been shown to normalize EEG and possibly improve the outcome in these patients. Here we examined whether oral glutamine supplementation is an effective treatment for MTLE by assessing the frequency and severity of seizures after supplementation in a translationally relevant model of the disease.Methods: Male Sprague Dawley rats (380-400 g) were allowed to drink unlimited amounts of glutamine in water (3.6% w/v; n = 8) or pure water (n = 8) for several weeks. Ten days after the start of glutamine supplementation, GS was chronically inhibited in the hippocampus to induce MTLE. Continuous video-intracranial EEG was collected for 21 days to determine the frequency and severity of seizures.Results: While there was no change in seizure frequency between the groups, the proportion of convulsive seizures was significantly higher in glutamine treated animals during the first three days of GS inhibition.Conclusion: The results suggest that oral glutamine supplementation transiently increases seizure severity in the initial stages of an epilepsy model, indicating a potential role of the amino acid in seizure propagation and epileptogenesis.
Collapse
Affiliation(s)
- Roni Dhaher
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA,Correspondence Roni Dhaher, PhD, Associate Research Scientist in Neurosurgery, Yale School of Medicine, 330 Cedar St., P.O. Box 208035, New Haven, CT 06520-8035, USA, Fax: +1-203-688-8597,
| | - Eric C. Chen
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Edgar Perez
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Amedeo Rapuano
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
| | | | - Shaun E. Gruenbaum
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Ketaki Deshpande
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Feng Dai
- Department of Biostatistics, Yale School of Medicine, New Haven, CT 06520, USA
| | - Hitten P. Zaveri
- Department of Neurology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Tore Eid
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
5
|
Inhibition of Glutamate Release, but Not of Glutamine Recycling to Glutamate, Is Involved in Delaying the Onset of Initial Lithium-Pilocarpine-Induced Seizures in Young Rats by a Non-Convulsive MSO Dose. Int J Mol Sci 2021; 22:ijms222011127. [PMID: 34681786 PMCID: PMC8536987 DOI: 10.3390/ijms222011127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Initial seizures observed in young rats during the 60 min after administration of pilocarpine (Pilo) were delayed and attenuated by pretreatment with a non-convulsive dose of methionine sulfoximine (MSO). We hypothesized that the effect of MSO results from a) glutamine synthetase block-mediated inhibition of conversion of Glu/Gln precursors to neurotransmitter Glu, and/or from b) altered synaptic Glu release. Pilo was administered 60 min prior to sacrifice, MSO at 75 mg/kg, i.p., 2.5 h earlier. [1,2-13C]acetate and [U-13C]glucose were i.p.-injected either together with Pilo (short period) or 15 min before sacrifice (long period). Their conversion to Glu and Gln in the hippocampus and entorhinal cortex was followed using [13C] gas chromatography-mass spectrometry. Release of in vitro loaded Glu surrogate, [3H]d-Asp from ex vivo brain slices was monitored in continuously collected superfusates. [3H]d-Asp uptake was tested in freshly isolated brain slices. At no time point nor brain region did MSO modify incorporation of [13C] to Glu or Gln in Pilo-treated rats. MSO pretreatment decreased by ~37% high potassium-induced [3H]d-Asp release, but did not affect [3H]d-Asp uptake. The results indicate that MSO at a non-convulsive dose delays the initial Pilo-induced seizures by interfering with synaptic Glu-release but not with neurotransmitter Glu recycling.
Collapse
|
6
|
Pawlik MJ, Obara-Michlewska M, Popek MP, Czarnecka AM, Czuczwar SJ, Łuszczki J, Kołodziej M, Acewicz A, Wierzba-Bobrowicz T, Albrecht J. Pretreatment with a glutamine synthetase inhibitor MSO delays the onset of initial seizures induced by pilocarpine in juvenile rats. Brain Res 2021; 1753:147253. [PMID: 33422530 DOI: 10.1016/j.brainres.2020.147253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/26/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023]
Abstract
The contribution of glutamatergic transmission to generation of initial convulsive seizures (CS) is debated. We tested whether pretreatment with a glutamine synthetase (GS) inhibitor, methionine sulfoximine (MSO), affects the onset and progression of initial CS by cholinergic stimulus in juvenile rats. Male rats (24 days old, Sprague Dawley) sequentially received i.p. injections of lithium-carbonate, MSO, methyl-scopolamine, and pilocarpine (Pilo). Pilo was given 150 min after MSO. Animals were continuously monitored using the Racine scale, EEG/EMG and intrahippocampal glutamate (Glu) biosensors. GS activity as measured in hippocampal homogenates, was not altered by MSO at 150 min, showed initial, varied inhibition at 165 (15 min post-Pilo), and dropped down to 11% of control at 60 min post-Pilo, whereas GS protein expression remained unaltered throughout. Pilo did neither modulate the effect of MSO on GS activity nor affect GS activity itself, at any time point. MSO reduced from 32% to 4% the number of animals showing CS during the first 12 min post-Pilo, delayed by ~6 min the appearance of electrographic seizures, and tended to decrease EMG power during ~15 min post-Pilo. The results indicate that MSO impairs an aspect of glutamatergic transmission involved in the transition from the first cholinergic stimulus to the onset of seizures. A continuous rise of extracellular Glu lasting 60 min was insignificantly affected by MSO, leaving the nature of the Glu pool(s) involved in altered glutamatergic transmission undefined.
Collapse
Affiliation(s)
- Marek J Pawlik
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland.
| | - Marta Obara-Michlewska
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland.
| | - Mariusz P Popek
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland.
| | - Anna Maria Czarnecka
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland.
| | - Stanisław J Czuczwar
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - Jarogniew Łuszczki
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - Marcin Kołodziej
- Institute of Theory of Electrical Engineering, Measurement and Information Systems, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland.
| | - Albert Acewicz
- Department of Neuropathology, Institute of Psychiatry and Neurology, Jana III Sobieskiego 9, 02-957 Warsaw, Poland.
| | - Teresa Wierzba-Bobrowicz
- Department of Neuropathology, Institute of Psychiatry and Neurology, Jana III Sobieskiego 9, 02-957 Warsaw, Poland.
| | - Jan Albrecht
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland.
| |
Collapse
|
7
|
Popek M, Bobula B, Sowa J, Hess G, Frontczak-Baniewicz M, Albrecht J, Zielińska M. Physiology and Morphological Correlates of Excitatory Transmission are Preserved in Glutamine Transporter SN1-Depleted Mouse Frontal Cortex. Neuroscience 2020; 446:124-136. [DOI: 10.1016/j.neuroscience.2020.08.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/16/2020] [Accepted: 08/14/2020] [Indexed: 01/22/2023]
|
8
|
Pietrancosta N, Djibo M, Daumas S, El Mestikawy S, Erickson JD. Molecular, Structural, Functional, and Pharmacological Sites for Vesicular Glutamate Transporter Regulation. Mol Neurobiol 2020; 57:3118-3142. [PMID: 32474835 PMCID: PMC7261050 DOI: 10.1007/s12035-020-01912-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/30/2020] [Indexed: 12/11/2022]
Abstract
Vesicular glutamate transporters (VGLUTs) control quantal size of glutamatergic transmission and have been the center of numerous studies over the past two decades. VGLUTs contain two independent transport modes that facilitate glutamate packaging into synaptic vesicles and phosphate (Pi) ion transport into the synaptic terminal. While a transmembrane proton electrical gradient established by a vacuolar-type ATPase powers vesicular glutamate transport, recent studies indicate that binding sites and flux properties for chloride, potassium, and protons within VGLUTs themselves regulate VGLUT activity as well. These intrinsic ionic binding and flux properties of VGLUTs can therefore be modulated by neurophysiological conditions to affect levels of glutamate available for release from synapses. Despite their extraordinary importance, specific and high-affinity pharmacological compounds that interact with these sites and regulate VGLUT function, distinguish between the various modes of transport, and the different isoforms themselves, are lacking. In this review, we provide an overview of the physiologic sites for VGLUT regulation that could modulate glutamate release in an over-active synapse or in a disease state.
Collapse
Affiliation(s)
- Nicolas Pietrancosta
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS) INSERM, CNRS, Sorbonne Université, Paris, France. .,Laboratoire des Biomolécules, Sorbonne Université, CNRS, ENS, LBM, 75005, Paris, France.
| | - Mahamadou Djibo
- Sorbonne Paris Cité, Université Paris Descartes, LCBPT, UMR 8601, 75006, Paris, France
| | - Stephanie Daumas
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS) INSERM, CNRS, Sorbonne Université, Paris, France
| | - Salah El Mestikawy
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS) INSERM, CNRS, Sorbonne Université, Paris, France. .,Douglas Hospital Research Center, Department of Psychiatry, McGill University, 6875 boulevard Lasalle, Verdun, Montreal, QC, Canada.
| | - Jeffrey D Erickson
- Neuroscience Center, Louisiana State University, New Orleans, LA, 70112, USA. .,Department of Pharmacology, Louisiana State University, New Orleans, LA, 70112, USA.
| |
Collapse
|
9
|
Eid T, Lee TSW, Patrylo P, Zaveri HP. Astrocytes and Glutamine Synthetase in Epileptogenesis. J Neurosci Res 2019; 97:1345-1362. [PMID: 30022509 PMCID: PMC6338538 DOI: 10.1002/jnr.24267] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 05/15/2018] [Accepted: 05/22/2018] [Indexed: 12/31/2022]
Abstract
The cellular, molecular, and metabolic mechanisms that underlie the development of mesial temporal lobe epilepsy are incompletely understood. Here we review the role of astrocytes in epilepsy development (a.k.a. epileptogenesis), particularly astrocyte pathologies related to: aquaporin 4, the inwardly rectifying potassium channel Kir4.1, monocarboxylate transporters MCT1 and MCT2, excitatory amino acid transporters EAAT1 and EAAT2, and glutamine synthetase. We propose that inhibition, dysfunction or loss of astrocytic glutamine synthetase is an important causative factor for some epilepsies, particularly mesial temporal lobe epilepsy and glioblastoma-associated epilepsy. We postulate that the regulatory mechanisms of glutamine synthetase as well as the downstream effects of glutamine synthetase dysfunction, represent attractive, new targets for antiepileptogenic interventions. Currently, no antiepileptogenic therapies are available for human use. The discovery of such interventions is important as it will fundamentally change the way we approach epilepsy by preventing the disease from ever becoming manifest after an epileptogenic insult to the brain.
Collapse
Affiliation(s)
- Tore Eid
- Department of Laboratory Medicine, Yale School of Medicine
- Department of Molecular Medicine, University of Oslo
| | | | - Peter Patrylo
- Department of Physiology, Southern Illinois University School of Medicine
| | | |
Collapse
|
10
|
Kuhlmann L, Lehnertz K, Richardson MP, Schelter B, Zaveri HP. Seizure prediction - ready for a new era. Nat Rev Neurol 2019; 14:618-630. [PMID: 30131521 DOI: 10.1038/s41582-018-0055-2] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epilepsy is a common disorder characterized by recurrent seizures. An overwhelming majority of people with epilepsy regard the unpredictability of seizures as a major issue. More than 30 years of international effort have been devoted to the prediction of seizures, aiming to remove the burden of unpredictability and to couple novel, time-specific treatment to seizure prediction technology. A highly influential review published in 2007 concluded that insufficient evidence indicated that seizures could be predicted. Since then, several advances have been made, including successful prospective seizure prediction using intracranial EEG in a small number of people in a trial of a real-time seizure prediction device. In this Review, we examine advances in the field, including EEG databases, seizure prediction competitions, the prospective trial mentioned and advances in our understanding of the mechanisms of seizures. We argue that these advances, together with statistical evaluations, set the stage for a resurgence in efforts towards the development of seizure prediction methodologies. We propose new avenues of investigation involving a synergy between mechanisms, models, data, devices and algorithms and refine the existing guidelines for the development of seizure prediction technology to instigate development of a solution that removes the burden of the unpredictability of seizures.
Collapse
Affiliation(s)
- Levin Kuhlmann
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, Victoria, Australia.,Department of Medicine - St. Vincent's, The University of Melbourne, Parkville, Victoria, Australia.,Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Klaus Lehnertz
- Department of Epileptology, University of Bonn, Bonn, Germany. .,Interdisciplinary Center for Complex Systems, University of Bonn, Bonn, Germany.
| | - Mark P Richardson
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Björn Schelter
- Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, UK
| | - Hitten P Zaveri
- Department of Neurology, Yale University, New Haven, CT, USA
| |
Collapse
|
11
|
Li Z, You Z, Li M, Pang L, Cheng J, Wang L. Protective Effect of Resveratrol on the Brain in a Rat Model of Epilepsy. Neurosci Bull 2017; 33:273-280. [PMID: 28161868 PMCID: PMC5567521 DOI: 10.1007/s12264-017-0097-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/15/2016] [Indexed: 12/28/2022] Open
Abstract
Accumulating evidence has suggested resveratrol as a promising drug candidate for the treatment of epilepsy. To validate this, we tested the protective effect of resveratrol on a kainic acid (KA)-induced epilepsy model in rats and investigated the underlying mechanism. We found that acute resveratrol application partially inhibited evoked epileptiform discharges in the hippocampal CA1 region. During acute, silent and chronic phases of epilepsy, the expression of hippocampal kainate glutamate receptor (GluK2) and the GABAA receptor alpha1 subunit (GABAAR-alpha1) was up-regulated and down-regulated, respectively. Resveratrol reversed these effects and induced an antiepileptic effect. Furthermore, in the chronic phase, resveratrol treatment inhibited the KA-induced increased glutamate/GABA ratio in the hippocampus. The antiepileptic effects of resveratrol may be partially attributed to the reduction of glutamate-induced excitotoxicity and the enhancement in GABAergic inhibition.
Collapse
MESH Headings
- Animals
- Anticonvulsants/administration & dosage
- Anticonvulsants/pharmacology
- CA1 Region, Hippocampal/drug effects
- CA1 Region, Hippocampal/metabolism
- CA1 Region, Hippocampal/physiopathology
- Disease Models, Animal
- Down-Regulation
- Epilepsy, Temporal Lobe/chemically induced
- Epilepsy, Temporal Lobe/drug therapy
- Epilepsy, Temporal Lobe/metabolism
- Excitatory Amino Acid Agonists/pharmacology
- Glutamic Acid/drug effects
- Kainic Acid/pharmacology
- Male
- Neuroprotective Agents/administration & dosage
- Neuroprotective Agents/pharmacology
- Rats
- Rats, Wistar
- Receptors, GABA-A/drug effects
- Receptors, Kainic Acid/drug effects
- Resveratrol
- Stilbenes/administration & dosage
- Stilbenes/pharmacology
- Up-Regulation
- gamma-Aminobutyric Acid/drug effects
- GluK2 Kainate Receptor
Collapse
Affiliation(s)
- Zhen Li
- Department of Pharmacology, Anhui Medical University, Hefei, 230032, China
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Zhuyan You
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Min Li
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Liang Pang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Juan Cheng
- Department of Pharmacology, Anhui Medical University, Hefei, 230032, China
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Liecheng Wang
- Department of Pharmacology, Anhui Medical University, Hefei, 230032, China.
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
12
|
Erickson JD. Functional identification of activity-regulated, high-affinity glutamine transport in hippocampal neurons inhibited by riluzole. J Neurochem 2017; 142:29-40. [PMID: 28423185 DOI: 10.1111/jnc.14046] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/17/2017] [Accepted: 04/05/2017] [Indexed: 12/23/2022]
Abstract
Glutamine (Gln) is considered the preferred precursor for the neurotransmitter pool of glutamate (Glu), the major excitatory transmitter in the mammalian CNS. Here, an activity-regulated, high-affinity Gln transport system is described in developing and mature neuron-enriched hippocampal cultures that is potently inhibited by riluzole (IC50 1.3 ± 0.5 μM), an anti-glutamatergic drug, and is blocked by low concentrations of 2-(methylamino)isobutyrate (MeAIB), a system A transport inhibitor. K+ -stimulated MeAIB transport displays an affinity (Km ) for MeAIB of 37 ± 1.2 μM, saturates at ~ 200 μM, is dependent on extracellular Ca2+ , and is blocked by inhibition of voltage-gated Ca2+ channels. Spontaneous MeAIB transport is also dependent on extracellullar Ca2+ and voltage-gated calcium channels, but is also blocked by the Na+ channel blocker tetrodotoxin, by Glu receptor antagonists, and by GABA indicating its dependence on intact neural circuits driven by endogenous glutamatergic activity. The transport of MeAIB itself does not rely on Ca2+ , but on Na+ ions, and is pH sensitive. Activity-regulated, riluzole-sensitive spontaneous and K+ -stimulated transport is minimal at 7-8 days in vitro, coordinately induced during the next 2 weeks and is maximally expressed by days in vitro > 20; the known period for maturation of the Glu/Gln cycle and regulated pre-synaptic Glu release. Competition analyses with various amino acids indicate that Gln is the most likely physiological substrate. Activity-regulated Gln/MeAIB transport is not observed in astrocytes. The functional identification of activity-regulated, high-affinity, riluzole-sensitive Gln/MeAIB transport in hippocampal neurons may have important ramifications in the neurobiology of activity-stimulated pre-synaptic Glu release, the Glu/Gln cycle between astrocytes and neurons, and neuronal Glu-induced excitotoxicity. Cover Image for this issue: doi: 10.1111/jnc.13805.
Collapse
Affiliation(s)
- Jeffrey D Erickson
- Neuroscience Center of Excellence, School of Medicine, Lousiania State University Health New Orleans, New Orleans, Louisiana, USA
| |
Collapse
|
13
|
Kanamori K. Faster flux of neurotransmitter glutamate during seizure - Evidence from 13C-enrichment of extracellular glutamate in kainate rat model. PLoS One 2017; 12:e0174845. [PMID: 28403176 PMCID: PMC5389799 DOI: 10.1371/journal.pone.0174845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/16/2017] [Indexed: 01/05/2023] Open
Abstract
The objective is to examine how the flux of neurotransmitter glutamate from neurons to the extracellular fluid, as measured by the rate of 13C enrichment of extracellular glutamate (GLUECF), changes in response to seizures in the kainate-induced rat model of temporal-lobe epilepsy. Following unilateral intrahippocampal injection of kainate, GLUECF was collected by microdialysis from the CA1/CA3 region of awake rats, in combination with EEG recording of chronic-phase recurrent seizures and intravenous infusion of [2,5-13C]glucose. The 13C enrichment of GLUECF C5 at ~ 10 picomol level was measured by gas-chromatography mass-spectrometry. The rate of 13C enrichment, expressed as the increase of the fractional enrichment/min, was 0.0029 ± 0.0001/min in frequently seizing rats (n = 4); this was significantly higher (p < 0.01) than in the control (0.00167 ± 0.0001/min; n = 6) or in rats with infrequent seizures (0.00172 ± 0.0001/min; n = 6). This result strongly suggests that the flux of the excitatory neurotransmitter from neurons to the extracellular fluid is significantly increased by frequent seizures. The extracellular [12C + 13C]glutamate concentration increased progressively in frequently seizing rats. Taken together, these results strongly suggest that the observed seizure-induced high flux of glutamate overstimulated glutamate receptors, which triggered a chain reaction of excitation in the CA3 recurrent glutamatergic networks. The rate of 13C enrichment of extracellular glutamine (GLNECF) at C5 was 0.00299 ± 0.00027/min in frequently seizing rats, which was higher (p < 0.05) than in controls (0.00227 ± 0.00008/min). For the first time in vivo, this study examined the effects of epileptic seizures on fluxes of the neurotransmitter glutamate and its precursor glutamine in the extracellular fluid of the hippocampus. The advantages, limitations and the potential for improvement of this approach for pre-clinical and clinical studies of temporal-lobe epilepsy are discussed.
Collapse
Affiliation(s)
- Keiko Kanamori
- Department of Epilepsy, Huntington Medical Research Institutes, Pasadena, California, United States of America
- * E-mail:
| |
Collapse
|
14
|
Glutamine triggers long-lasting increase in striatal network activity in vitro. Exp Neurol 2017; 290:41-52. [DOI: 10.1016/j.expneurol.2017.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 12/05/2016] [Accepted: 01/04/2017] [Indexed: 01/04/2023]
|
15
|
Mechanisms of Excessive Extracellular Glutamate Accumulation in Temporal Lobe Epilepsy. Neurochem Res 2016; 42:1724-1734. [DOI: 10.1007/s11064-016-2105-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 12/17/2022]
|
16
|
Kanamori K. Disinhibition reduces extracellular glutamine and elevates extracellular glutamate in rat hippocampus in vivo. Epilepsy Res 2015; 114:32-46. [PMID: 26088883 DOI: 10.1016/j.eplepsyres.2015.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 01/14/2015] [Accepted: 03/16/2015] [Indexed: 02/07/2023]
Abstract
Disinhibition was induced in the hippocampal CA1/CA3 region of normal adult rats by unilateral perfusion of the GABA(A)R antagonist, 4-[6-imino-3-(4-methoxyphenyl)pyridazin-1-yl] butanoic acid hydrobromide (gabazine), or a GABA(B)R antagonist, p-(3-aminopropyl)-p-diethoxymethyl-phosphinic acid (CGP 35348), through a microdialysis probe. Effects of disinhibition on EEG recordings and the concentrations of extracellular glutamate (GLU(ECF)), the major excitatory neurotransmitter, and of extracellular glutamine (GLN(ECF)), its precursor, were examined bilaterally in freely behaving rats. Unilateral perfusion of 10 μM gabazine in artificial CSF of normal electrolyte composition for 34 min induced epileptiform discharges which represent synchronized glutamatergic population bursts, not only in the gabazine-perfused ipsilateral hippocampus, but also in the aCSF-perfused contralateral hippocampus. The concentration of GLU(ECF) remained unchanged, but the concentration of its precursor, GLN(ECF), decreased to 73 ± 4% (n = 5) of the baseline during frequent epileptiform discharges, not only in the ipsilateral, but also in the contralateral hippocampus, where the change can be attributed to recurrent epileptiform discharges per se, with recovery to 95% of baseline when epileptiform discharges diminished. The blockade of GABA(B)R, by CGP 35348 perfusion in the ipsilateral hippocampus for 30 min, induced bilateral Na(+) spikes in extracellular recording. These can reasonably be attributed to somatic and dendritic action potentials and are indicative of synchronized excitatory activity. This disinhibition induced, in both hippocampi, (a) transient 1.6-2.4-fold elevation of GLU(ECF) which correlated with the number of Na(+) spike cluster events and (b) concomitant reduction of GLN(ECF) to ∼ 70%. Intracellular GLN concentration was measured in the hippocampal CA1/CA3 region sampled by microdialysis in separate groups of rats by snap-freezing the brain after 25 min of gabazine perfusion or 20 min of CGP perfusion when extracellular GLN (GLN(ECF)) was 60-70% of the pre-perfusion level. These intracellular GLN concentrations in the disinhibited hippocampi showed no statistically significant difference from the untreated control. This result strongly suggests that the observed decrease of GLN(ECF) is not due to reduced glutamine synthesis or decrease in the rate of efflux of GLN to ECF. This strengthens the likelihood that reduced GLN(ECF) reflects increased GLN uptake into neurons to sustain enhanced GLU flux during excitatory population bursts in disinhibited hippocampus. The results are consistent with the emerging concept that neuronal uptake of GLN(ECF) plays a major role in sustaining epileptiform activities in the kainate-induced model of temporal-lobe epilepsy.
Collapse
Affiliation(s)
- Keiko Kanamori
- Huntington Medical Research Institutes, 660 South Fair Oaks Avenue, Pasadena, CA 91105, USA.
| |
Collapse
|
17
|
Sierra-Paredes G, Loureiro AI, Wright LC, Sierra-Marcuño G, Soares-da-Silva P. Effects of eslicarbazepine acetate on acute and chronic latrunculin A-induced seizures and extracellular amino acid levels in the mouse hippocampus. BMC Neurosci 2014; 15:134. [PMID: 25526768 PMCID: PMC4279694 DOI: 10.1186/s12868-014-0134-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 12/11/2014] [Indexed: 11/24/2022] Open
Abstract
Background Latrunculin A microperfusion of the hippocampus induces acute epileptic seizures and long-term biochemical changes leading to spontaneous seizures. This study tested the effect of eslicarbazepine acetate (ESL), a novel antiepileptic drug, on latrunculin A-induced acute and chronic seizures, and changes in brain amino acid extracellular levels. Hippocampi of Swiss mice were continuously perfused with a latrunculin A solution (4 μM, 1 μl/min, 7 h/day) with continuous EEG and videotape recording for 3 consecutive days. Microdialysate samples were analyzed by HPLC and fluorescence detection of taurine, glycine, aspartate, glutamate and GABA. Thereafter, mice were continuously video monitored for two months to identify chronic spontaneous seizures or behavioral changes. Control EEG recordings (8 h) were performed in all animals at least once a week for a minimum of one month. Results Oral administration of ESL (100 mg/kg), previous to latrunculin A microperfusion, completely prevented acute latrunculin A-induced seizures as well as chronic seizures and all EEG chronic signs of paroxysmal activity. Hippocampal extracellular levels of taurine, glycine and aspartate were significantly increased during latrunculin A microperfusion, while GABA and glutamate levels remained unchanged. ESL reversed the increases in extracellular taurine, glycine and aspartate concentrations to basal levels and significantly reduced glutamate levels. Plasma and brain bioanalysis showed that ESL was completely metabolized within 1 h after administration to mainly eslicarbazepine, its major active metabolite. Conclusion ESL treatment prevented acute latrunculin A-induced seizures as well as chronic seizures and all EEG chronic signs of paroxysmal activity, supporting a possible anti-epileptogenic effect of ESL in mice.
Collapse
Affiliation(s)
- Germán Sierra-Paredes
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain.
| | - Ana I Loureiro
- Department Research & Development, BIAL - Portela & Cª - S.A., 4745-457, S. Mamede do Coronado, Portugal.
| | - Lyndon C Wright
- Department Research & Development, BIAL - Portela & Cª - S.A., 4745-457, S. Mamede do Coronado, Portugal.
| | - Germán Sierra-Marcuño
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain.
| | - Patrício Soares-da-Silva
- Department Research & Development, BIAL - Portela & Cª - S.A., 4745-457, S. Mamede do Coronado, Portugal. .,Department Pharmacology & Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal. .,MedInUP - Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal. .,Department of Research and Development, BIAL, À Av. da Siderurgia Nacional, 4745-457, S. Mamede do Coronado, Portugal.
| |
Collapse
|
18
|
DiNuzzo M, Mangia S, Maraviglia B, Giove F. Physiological bases of the K+ and the glutamate/GABA hypotheses of epilepsy. Epilepsy Res 2014; 108:995-1012. [PMID: 24818957 DOI: 10.1016/j.eplepsyres.2014.04.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/20/2014] [Accepted: 04/01/2014] [Indexed: 01/19/2023]
Abstract
Epilepsy is a heterogeneous family of neurological disorders that manifest as seizures, i.e. the hypersynchronous activity of large population of neurons. About 30% of epileptic patients do not respond to currently available antiepileptic drugs. Decades of intense research have elucidated the involvement of a number of possible signaling pathways, however, at present we do not have a fundamental understanding of epileptogenesis. In this paper, we review the literature on epilepsy under a wide-angle perspective, a mandatory choice that responds to the recurrent and unanswered question about what is epiphenomenal and what is causal to the disease. While focusing on the involvement of K+ and glutamate/GABA in determining neuronal hyperexcitability, emphasis is given to astrocytic contribution to epileptogenesis, and especially to loss-of-function of astrocytic glutamine synthetase following reactive astrogliosis, a hallmark of epileptic syndromes. We finally introduce the potential involvement of abnormal glycogen synthesis induced by excess glutamate in increasing susceptibility to seizures.
Collapse
Affiliation(s)
- Mauro DiNuzzo
- MARBILab, Museo storico della fisica e Centro di studi e ricerche "Enrico Fermi", Rome, Italy.
| | - Silvia Mangia
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Bruno Maraviglia
- Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy; Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Federico Giove
- MARBILab, Museo storico della fisica e Centro di studi e ricerche "Enrico Fermi", Rome, Italy; Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy
| |
Collapse
|