1
|
Bhandare AM, Dale N. Neural correlate of reduced respiratory chemosensitivity during chronic epilepsy. Front Cell Neurosci 2023; 17:1288600. [PMID: 38193031 PMCID: PMC10773801 DOI: 10.3389/fncel.2023.1288600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
While central autonomic, cardiac, and/or respiratory dysfunction underlies sudden unexpected death in epilepsy (SUDEP), the specific neural mechanisms that lead to SUDEP remain to be determined. In this study, we took advantage of single-cell neuronal Ca2+ imaging and intrahippocampal kainic acid (KA)-induced chronic epilepsy in mice to investigate progressive changes in key cardiorespiratory brainstem circuits during chronic epilepsy. Weeks after induction of status epilepticus (SE), when mice were experiencing recurrent spontaneous seizures (chronic epilepsy), we observed that the adaptive ventilatory responses to hypercapnia were reduced for 5 weeks after SE induction with its partial recovery at week 7. These changes were paralleled by alterations in the chemosensory responses of neurons in the retrotrapezoid nucleus (RTN). Neurons that displayed adapting responses to hypercapnia were less prevalent and exhibited smaller responses over weeks 3-5, whereas neurons that displayed graded responses to hypercapnia became more prevalent by week 7. Over the same period, chemosensory responses of the presympathetic rostral ventrolateral medullary (RVLM) neurons showed no change. Mice with chronic epilepsy showed enhanced sensitivity to seizures, which invade the RTN and possibly put the chemosensory circuits at further risk of impairment. Our findings establish a dysfunctional breathing phenotype with its RTN neuronal correlate in mice with chronic epilepsy and suggest that the assessment of respiratory chemosensitivity may have the potential for identifying people at risk of SUDEP.
Collapse
Affiliation(s)
- Amol M. Bhandare
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | | |
Collapse
|
2
|
Casillas-Espinosa PM, Anderson A, Harutyunyan A, Li C, Lee J, Braine EL, Brady RD, Sun M, Huang C, Barlow CK, Shah AD, Schittenhelm RB, Mychasiuk R, Jones NC, Shultz SR, O'Brien TJ. Disease-modifying effects of sodium selenate in a model of drug-resistant, temporal lobe epilepsy. eLife 2023; 12:e78877. [PMID: 36892461 PMCID: PMC10208637 DOI: 10.7554/elife.78877] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 03/08/2023] [Indexed: 03/10/2023] Open
Abstract
There are no pharmacological disease-modifying treatments with an enduring effect to mitigate the seizures and comorbidities of established chronic temporal lobe epilepsy (TLE). This study aimed to evaluate for disease modifying effects of sodium selenate treatment in the chronically epileptic rat post-status epilepticus (SE) model of drug-resistant TLE. Wistar rats underwent kainic acid-induced SE or sham. Ten-weeks post-SE, animals received sodium selenate, levetiracetam, or vehicle subcutaneousinfusion continuously for 4 weeks. To evaluate the effects of the treatments, one week of continuous video-EEG was acquired before, during, and 4, 8 weeks post-treatment, followed by behavioral tests. Targeted and untargeted proteomics and metabolomics were performed on post-mortem brain tissue to identify potential pathways associated with modified disease outcomes. Telomere length was investigated as a novel surrogate marker of epilepsy disease severity in our current study. The results showed that sodium selenate treatment was associated with mitigation of measures of disease severity at 8 weeks post-treatment cessation; reducing the number of spontaneous seizures (p< 0.05), cognitive dysfunction (p< 0.05), and sensorimotor deficits (p< 0.01). Moreover, selenate treatment was associated with increased protein phosphatase 2A (PP2A) expression, reduced hyperphosphorylated tau, and reversed telomere length shortening (p< 0.05). Network medicine integration of multi-omics/pre-clinical outcomes identified protein-metabolite modules positively correlated with TLE. Our results provide evidence that treatment with sodium selenate results in a sustained disease-modifying effect in chronically epileptic rats in the post-KA SE model of TLE, including improved comorbid learning and memory deficits.
Collapse
Affiliation(s)
- Pablo M Casillas-Espinosa
- Department of Medicine, The Royal Melbourne Hospital, The University of MelbourneMelbourneAustralia
- Department of Neuroscience, Central Clinical School, Monash UniversityMelbourneAustralia
- Monash Proteomics & Metabolomics Facility and Monash Biomedicine Discovery Institute, Monash UniversityClayton, VictoriaAustralia
| | - Alison Anderson
- Department of Medicine, The Royal Melbourne Hospital, The University of MelbourneMelbourneAustralia
- Department of Neuroscience, Central Clinical School, Monash UniversityMelbourneAustralia
| | - Anna Harutyunyan
- Department of Medicine, The Royal Melbourne Hospital, The University of MelbourneMelbourneAustralia
- Department of Neuroscience, Central Clinical School, Monash UniversityMelbourneAustralia
| | - Crystal Li
- Department of Neuroscience, Central Clinical School, Monash UniversityMelbourneAustralia
| | - Jiyoon Lee
- Department of Medicine, The Royal Melbourne Hospital, The University of MelbourneMelbourneAustralia
| | - Emma L Braine
- Department of Medicine, The Royal Melbourne Hospital, The University of MelbourneMelbourneAustralia
- Department of Neuroscience, Central Clinical School, Monash UniversityMelbourneAustralia
| | - Rhys D Brady
- Department of Medicine, The Royal Melbourne Hospital, The University of MelbourneMelbourneAustralia
- Department of Neuroscience, Central Clinical School, Monash UniversityMelbourneAustralia
| | - Mujun Sun
- Department of Neuroscience, Central Clinical School, Monash UniversityMelbourneAustralia
| | - Cheng Huang
- Department of Neurology, The Alfred Hospital, Commercial Road,Melbourne, VictoriaAustralia
| | - Christopher K Barlow
- Department of Neurology, The Alfred Hospital, Commercial Road,Melbourne, VictoriaAustralia
| | - Anup D Shah
- Department of Neurology, The Alfred Hospital, Commercial Road,Melbourne, VictoriaAustralia
| | - Ralf B Schittenhelm
- Department of Neurology, The Alfred Hospital, Commercial Road,Melbourne, VictoriaAustralia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash UniversityMelbourneAustralia
| | - Nigel C Jones
- Department of Medicine, The Royal Melbourne Hospital, The University of MelbourneMelbourneAustralia
- Department of Neuroscience, Central Clinical School, Monash UniversityMelbourneAustralia
| | - Sandy R Shultz
- Department of Medicine, The Royal Melbourne Hospital, The University of MelbourneMelbourneAustralia
- Department of Neuroscience, Central Clinical School, Monash UniversityMelbourneAustralia
| | - Terence J O'Brien
- Department of Medicine, The Royal Melbourne Hospital, The University of MelbourneMelbourneAustralia
- Department of Neuroscience, Central Clinical School, Monash UniversityMelbourneAustralia
- Monash Proteomics & Metabolomics Facility and Monash Biomedicine Discovery Institute, Monash UniversityClayton, VictoriaAustralia
| |
Collapse
|
3
|
Gurses AA, Genc E, Gurses KM, Altiparmak T, Yildirim I, Genc BO. QT interval alterations in epilepsy: A thorough investigation between epilepsy subtypes. J Clin Neurosci 2022; 104:113-117. [PMID: 36027652 DOI: 10.1016/j.jocn.2022.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Cardiac disturbances and rhythm abnormalities which potentially lead sudden unexpected death in epilepsy, have been extensively studied in focal epilepsies. However, studies including generalized epilepsies are scarce and it is not clear whether electrocardiogram parameters reflecting vulnerability to ventricular arrhythmias differ between these groups. METHODS Medical records of patients who were followed in epilepsy department of a tertiary center between October 2015 and September 2016 were retrospectively reviewed. 66 generalized and 64 focal epilepsy patients with eligible electrophysiological data were analyzed. QTc interval, QTcd and other electrocardiographic indices were compared between patients with focal vs generalized epilepsy. Another analysis was performed in order to disclose any difference between patients with epilepsy (n:130) and psychogenic non-epileptic seizures. A two-tailed p value < 0.05 was considered significant. RESULTS There was no difference in terms of QTc and QTcd between patients with focal and generalized epilepsy [median: 406 ms vs 404 ms, p = 0.119; and median: 46 ms vs 44 ms, p = 0.497, respectively]. However patients with epilepsy were found to have longer QTc and QTcd when compared to ones with psychogenic non-epileptic seizures (p = 0.035 and p < 0.001, respectively). CONCLUSION Current findings demonstrate that patients with epilepsy have longer QTc and QTcd than patients with pure psychogenic non-epileptic seizures. Since there was no difference between patients with focal and generalized epilepsy; QTc interval, QTcd and potential susceptibility to cardiac arrhythmias as a result, could be a consequence of epilepsy itself regardless of origin.
Collapse
Affiliation(s)
- Asli Akyol Gurses
- Gazi University School of Medicine, Department of Neurology (Division of Clinical Neurophysiology), 906560 Ankara, Turkey.
| | - Emine Genc
- Necmettin Erbakan University, Meram School of Medicine, Department of Neurology, 9042080 Konya, Turkey
| | - Kadri Murat Gurses
- Konya Training and Research Hospital, Cardiology Clinic, 9042080 Konya, Turkey
| | - Taylan Altiparmak
- Gazi University School of Medicine, Department of Neurology (Division of Clinical Neurophysiology), 906560 Ankara, Turkey
| | - Irem Yildirim
- Gazi University School of Medicine, Department of Neurology (Division of Clinical Neurophysiology), 906560 Ankara, Turkey
| | - Bulent Oguz Genc
- Necmettin Erbakan University, Meram School of Medicine, Department of Neurology, 9042080 Konya, Turkey
| |
Collapse
|
4
|
Altered cardiac structure and function is related to seizure frequency in a rat model of chronic acquired temporal lobe epilepsy. Neurobiol Dis 2021; 159:105505. [PMID: 34520843 DOI: 10.1016/j.nbd.2021.105505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 09/02/2021] [Accepted: 09/05/2021] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE This study aimed to prospectively examine cardiac structure and function in the kainic acid-induced post-status epilepticus (post-KA SE) model of chronic acquired temporal lobe epilepsy (TLE), specifically to examine for changes between the pre-epileptic, early epileptogenesis and the chronic epilepsy stages. We also aimed to examine whether any changes related to the seizure frequency in individual animals. METHODS Four hours of SE was induced in 9 male Wistar rats at 10 weeks of age, with 8 saline treated matched control rats. Echocardiography was performed prior to the induction of SE, two- and 10-weeks post-SE. Two weeks of continuous video-EEG and simultaneous ECG recordings were acquired for two weeks from 11 weeks post-KA SE. The video-EEG recordings were analyzed blindly to quantify the number and severity of spontaneous seizures, and the ECG recordings analyzed for measures of heart rate variability (HRV). PicroSirius red histology was performed to assess cardiac fibrosis, and intracellular Ca2+ levels and cell contractility were measured by microfluorimetry. RESULTS All 9 post-KA SE rats were demonstrated to have spontaneous recurrent seizures on the two-week video-EEG recording acquired from 11 weeks SE (seizure frequency ranging from 0.3 to 10.6 seizures/day with the seizure durations from 11 to 62 s), and none of the 8 control rats. Left ventricular wall thickness was thinner, left ventricular internal dimension was shorter, and ejection fraction was significantly decreased in chronically epileptic rats, and was negatively correlated to seizure frequency in individual rats. Diastolic dysfunction was evident in chronically epileptic rats by a decrease in mitral valve deceleration time and an increase in E/E` ratio. Measures of HRV were reduced in the chronically epileptic rats, indicating abnormalities of cardiac autonomic function. Cardiac fibrosis was significantly increased in epileptic rats, positively correlated to seizure frequency, and negatively correlated to ejection fraction. The cardiac fibrosis was not a consequence of direct effect of KA toxicity, as it was not seen in the 6/10 rats from separate cohort that received similar doses of KA but did not go into SE. Cardiomyocyte length, width, volume, and rate of cell lengthening and shortening were significantly reduced in epileptic rats. SIGNIFICANCE The results from this study demonstrate that chronic epilepsy in the post-KA SE rat model of TLE is associated with a progressive deterioration in cardiac structure and function, with a restrictive cardiomyopathy associated with myocardial fibrosis. Positive correlations between seizure frequency and the severity of the cardiac changes were identified. These results provide new insights into the pathophysiology of cardiac disease in chronic epilepsy, and may have relevance for the heterogeneous mechanisms that place these people at risk of sudden unexplained death.
Collapse
|
5
|
Mandal R, Budde R, Lawlor GL, Irazoqui P. Utilizing multimodal imaging to visualize potential mechanism for sudden death in epilepsy. Epilepsy Behav 2021; 122:108124. [PMID: 34237676 PMCID: PMC8429091 DOI: 10.1016/j.yebeh.2021.108124] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/20/2021] [Accepted: 05/31/2021] [Indexed: 12/28/2022]
Abstract
Sudden death in epilepsy or SUDEP is a fatal condition that accounts for more than 4000 deaths each year. Limited clinical and preclinical data on sudden death suggest critical contributions from autonomic, cardiac, and respiratory pathways. A potential mechanism for such sudden and severe cardiorespiratory dysregulation may be linked to acid reflux-induced laryngospasm. Here, we expand on our previous investigations and utilize a novel multimodal approach to provide visual evidence of acid reflux-initiated cardiorespiratory distress and subsequent sudden death in seizing rats. We used systemic kainic acid to acutely induce seizure activity in Long Evans rats, under urethane anesthesia. We recorded electroencephalography (EEG), electrocardiography (ECG), chest plethysmography, and esophageal pH signals through a multimodal recording platform, during simultaneous fast MRI scans of the rat stomach and esophagus. MRI images, in correlation with electrophysiology data were used to identify seizure progression, stomach acid movement up the esophagus, cardiorespiratory changes, and sudden death. In all cases of sudden death, esophageal pH recordings alongside MRI images visualized stomach acid movement up the esophagus. Severe cardiac (ST segment elevation), respiratory (intermittent apnea) and brain activity (EEG narrowing due to hypoxia) changes were observed only after acid reached larynx, which strongly suggested onset of laryngospasm following acid reflux. The complementary information coming from electrophysiology and fast MRI scans provided insight into the mechanism of esophageal reflux, laryngospasm, obstructive apnea, and subsequent sudden death in seizing animals. The results carry clinical significance as it outlines a potential mechanism that may be relevant to SUDEP in humans.
Collapse
Affiliation(s)
| | - Ryan Budde
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Georgia L. Lawlor
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
| | - Pedro Irazoqui
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA,School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
6
|
Acute and chronic cardiorespiratory consequences of focal intrahippocampal administration of seizure-inducing agents. Implications for SUDEP. Auton Neurosci 2021; 235:102864. [PMID: 34428716 DOI: 10.1016/j.autneu.2021.102864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/02/2021] [Accepted: 07/26/2021] [Indexed: 11/20/2022]
Abstract
The risk factors for SUDEP are undoubtedly heterogenous but the main factor is the frequency of generalized tonic-clonic seizures with apnoea and/or cardiac abnormalities likely precipitating the lethal event. By its very nature modelling SUDEP experimentally is challenging, yet insights into the nature of the lethal event and precipitating factors are vital in order to understand and prevent fatalities. Acute animal models, which induce status epilepticus (SE), can be used to help understand pathophysiological processes during and following seizures, which sometimes lead to death. The most commonly used method to induce seizures and status epilepticus is systemic administration of an ictogenic agent. Microinjection of such agents into restricted regions within the brain induces a more localised epileptic focus and circumvents the risk of direct actions on cardiorespiratory control centres. Both approaches have revealed substantial cardiovascular and respiratory consequences, including death as a result of apnoea, which may be of central origin, obstructive due to laryngospasm or, at least in genetically modified mice, a result of spreading depolarisation to medullary respiratory control centres. SUDEP is by definition a result of epilepsy, which in turn is diagnosed on the basis of two or more unprovoked seizures. The incidence of tonic-clonic seizures is the main risk factor, raising the possibility that repeated seizures cause cumulative pathological and/or pathophysiological changes that contribute to the risk of SUDEP. Chronic experimental models, which induce repeated seizures that in some cases lead to death, do show progressive development of pathophysiological changes in the myocardium, e.g. prolongation of QT the interval of the ECG or, over longer periods, ventricular hypertrophy. However, the currently available evidence indicates that seizure-related deaths are primarily due to apnoeas, but cardiac factors, particularly cumulative cardiac pathophysiologies due to repeated seizures, are potential contributing factors.
Collapse
|
7
|
Akyüz E, Üner AK, Köklü B, Arulsamy A, Shaikh MF. Cardiorespiratory findings in epilepsy: A recent review on outcomes and pathophysiology. J Neurosci Res 2021; 99:2059-2073. [PMID: 34109651 DOI: 10.1002/jnr.24861] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/16/2021] [Accepted: 05/06/2021] [Indexed: 12/17/2022]
Abstract
Epilepsy is a debilitating disorder of uncontrollable recurrent seizures that occurs as a result of imbalances in the brain excitatory and inhibitory neuronal signals, that could stem from a range of functional and structural neuronal impairments. Globally, nearly 70 million people are negatively impacted by epilepsy and its comorbidities. One such comorbidity is the effect epilepsy has on the autonomic nervous system (ANS), which plays a role in the control of blood circulation, respiration and gastrointestinal function. These epilepsy-induced impairments in the circulatory and respiratory systems may contribute toward sudden unexpected death in epilepsy (SUDEP). Although, various hypotheses have been proposed regarding the role of epilepsy on ANS, the linking pathological mechanism still remains unclear. Channelopathies and seizure-induced damages in ANS-control brain structures were some of the causal/pathological candidates of cardiorespiratory comorbidities in epilepsy patients, especially in those who were drug resistant. However, emerging preclinical research suggest that neurotransmitter/receptor dysfunction and synaptic changes in the ANS may also contribute to the epilepsy-related autonomic disorders. Thus, pathological mechanisms of cardiorespiratory dysfunction should be elucidated by considering the modifications in anatomy and physiology of the autonomic system caused by seizures. In this regard, we present a comprehensive review of the current literature, both clinical and preclinical animal studies, on the cardiorespiratory findings in epilepsy and elucidate the possible pathological mechanisms of these findings, in hopes to prevent SUDEP especially in patients who are drug resistant.
Collapse
Affiliation(s)
- Enes Akyüz
- Department of Biophysics, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Arda Kaan Üner
- Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Betül Köklü
- Faculty of Medicine, Namık Kemal University, Tekirdağ, Turkey
| | - Alina Arulsamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
8
|
Pansani AP, Ghazale PP, Dos Santos EG, Dos Santos Borges K, Gomes KP, Lacerda IS, Castro CH, Mendes EP, Dos Santos FCA, Biancardi MF, Nejm MB, Dogini DB, Rabelo LA, Nunes-Souza V, Scorza FA, Colugnati DB. The number and periodicity of seizures induce cardiac remodeling and changes in micro-RNA expression in rats submitted to electric amygdala kindling model of epilepsy. Epilepsy Behav 2021; 116:107784. [PMID: 33548915 DOI: 10.1016/j.yebeh.2021.107784] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/03/2021] [Accepted: 01/03/2021] [Indexed: 12/20/2022]
Abstract
Generalized tonic-clonic seizures (GTCS) are the main risk factor for sudden unexpected death in epilepsy (SUDEP). Also, among the several mechanisms underlying SUDEP there is the cardiac dysfunction. So, we aimed to evaluate the impact of the number of seizures on heart function and morphology in rats with epilepsy. Rats were randomized into three groups: Sham (without epilepsy), 5 S, and 10 S groups, referred as rats with epilepsy with a total of 5 or 10 GTCS, respectively. Epilepsy was induced by electrical amygdala kindling. The ventricular function was analyzed by the Langendorff technique and challenged by ischemia/reperfusion protocol. Cardiac fibrosis and hypertrophy were analyzed by histology. We also analyzed cardiac metalloproteinases (MMP2 and MMP9), ERK 1/2 and phosphorylated ERK1/2 (P-ERK) by western blot; microRNA-21 and -320 by RT-PCR; and oxidative stress (TBARS, catalase activity and nitrite) by biochemical analysis. Only the 5S group presented decreased values of ventricular function at before ischemia/reperfusion (baseline): intraventricular systolic pressure, developed intraventricular pressure, positive and negative dP/dt. During ischemia/reperfusion protocol, the variation of the ventricular function did not differ among groups. Both 5S and 10S groups had increased cardiomyocyte hypertrophy and fibrosis compared to Sham, but in the 5S group, these alterations were higher than in the 10S group. The 5S group increased in microRNA-21 and decreased in microRNA-320 expression compared to Sham and the 10S group. The 10S group increased in MMP9 and decreased in P-ERK/ERK expression, and increased in nitrite content compared to both Sham and the 5S group. Therefore, seizures impair cardiac function and morphology, probably through microRNA modulation. The continuation of seizures seems to exert a preconditioning-like stimulus that fails to compensate the cardiac tissue alteration.
Collapse
Affiliation(s)
- Aline Priscila Pansani
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil.
| | - Poliana Peres Ghazale
- Department of Neurology and Neurosurgery, Federal University of São Paulo, São Paulo, Brazil
| | - Emilly Gomes Dos Santos
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Kiscilla Dos Santos Borges
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Karina Pereira Gomes
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Ismaley Santos Lacerda
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Carlos Henrique Castro
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Elizabeth Pereira Mendes
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | | | | | - Mariana Bocca Nejm
- Department of Neurology and Neurosurgery, Federal University of São Paulo, São Paulo, Brazil
| | - Danyella Barbosa Dogini
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Luiza Antas Rabelo
- Department of Physiology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Valéria Nunes-Souza
- Department of Physiological and Pharmacology Sciences, Institute of Biological Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Fulvio Alexandre Scorza
- Department of Neurology and Neurosurgery, Federal University of São Paulo, São Paulo, Brazil
| | - Diego Basile Colugnati
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| |
Collapse
|
9
|
Akyuz E, Doganyigit Z, Eroglu E, Moscovicz F, Merelli A, Lazarowski A, Auzmendi J. Myocardial Iron Overload in an Experimental Model of Sudden Unexpected Death in Epilepsy. Front Neurol 2021; 12:609236. [PMID: 33643194 PMCID: PMC7905080 DOI: 10.3389/fneur.2021.609236] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022] Open
Abstract
Uncontrolled repetitive generalized tonic-clonic seizures (GTCS) are the main risk factor for sudden unexpected death in epilepsy (SUDEP). GTCS can be observed in models such as Pentylenetetrazole kindling (PTZ-K) or pilocarpine-induced Status Epilepticus (SE-P), which share similar alterations in cardiac function, with a high risk of SUDEP. Terminal cardiac arrhythmia in SUDEP can develop as a result of a high rate of hypoxic stress-induced by convulsions with excessive sympathetic overstimulation that triggers a neurocardiogenic injury, recently defined as "Epileptic Heart" and characterized by heart rhythm disturbances, such as bradycardia and lengthening of the QT interval. Recently, an iron overload-dependent form of non-apoptotic cell death called ferroptosis was described at the brain level in both the PTZ-K and SE-P experimental models. However, seizure-related cardiac ferroptosis has not yet been reported. Iron overload cardiomyopathy (IOC) results from the accumulation of iron in the myocardium, with high production of reactive oxygen species (ROS), lipid peroxidation, and accumulation of hemosiderin as the final biomarker related to cardiomyocyte ferroptosis. Iron overload cardiomyopathy is the leading cause of death in patients with iron overload secondary to chronic blood transfusion therapy; it is also described in hereditary hemochromatosis. GTCS, through repeated hypoxic stress, can increase ROS production in the heart and cause cardiomyocyte ferroptosis. We hypothesized that iron accumulation in the "Epileptic Heart" could be associated with a terminal cardiac arrhythmia described in the IOC and the development of state-potentially in the development of SUDEP. Using the aforementioned PTZ-K and SE-P experimental models, after SUDEP-related repetitive GTCS, we observed an increase in the cardiac expression of hypoxic inducible factor 1α, indicating hypoxic-ischemic damage, and both necrotic cells and hemorrhagic areas were related to the possible hemosiderin production in the PTZ-K model. Furthermore, we demonstrated for the first time an accumulation of hemosiderin in the heart in the SE-P model. These results suggest that uncontrolled recurrent seizures, as described in refractory epilepsy, can give rise to high hypoxic stress in the heart, thus inducing hemosiderin accumulation as in IOC, and can act as an underlying hidden mechanism contributing to the development of a terminal cardiac arrhythmia in SUDEP. Because iron accumulation in tissues can be detected by non-invasive imaging methods, cardiac iron overload in refractory epilepsy patients could be treated with chelation therapy to reduce the risk of SUDEP.
Collapse
Affiliation(s)
- Enes Akyuz
- Department of Biophysics, Medical School, Yozgat Bozok University, Yozgat, Turkey
| | - Zuleyha Doganyigit
- Department of Histology and Embryology, Medical School, Yozgat Bozok University, Yozgat, Turkey
| | - Ece Eroglu
- Medical School, Yozgat Bozok University, Yozgat, Turkey
| | - Franco Moscovicz
- Department of Clinical Biochemistry, School of Pharmacy and Biochemistry, Pathophysiology and Clinical Biochemistry Institute (INFIBIOC), University of Buenos Aires, Buenos Aires, Argentina
| | - Amalia Merelli
- Department of Clinical Biochemistry, School of Pharmacy and Biochemistry, Pathophysiology and Clinical Biochemistry Institute (INFIBIOC), University of Buenos Aires, Buenos Aires, Argentina
| | - Alberto Lazarowski
- Department of Clinical Biochemistry, School of Pharmacy and Biochemistry, Pathophysiology and Clinical Biochemistry Institute (INFIBIOC), University of Buenos Aires, Buenos Aires, Argentina
| | - Jerónimo Auzmendi
- Department of Clinical Biochemistry, School of Pharmacy and Biochemistry, Pathophysiology and Clinical Biochemistry Institute (INFIBIOC), University of Buenos Aires, Buenos Aires, Argentina.,National Council of Science and Technology (CONICET), Buenos Aires, Argentina
| |
Collapse
|
10
|
Lucchesi M, Silverman JB, Sundaram K, Kollmar R, Stewart M. Proposed Mechanism-Based Risk Stratification and Algorithm to Prevent Sudden Death in Epilepsy. Front Neurol 2021; 11:618859. [PMID: 33569036 PMCID: PMC7868441 DOI: 10.3389/fneur.2020.618859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
Sudden Unexpected Death in Epilepsy (SUDEP) is the leading cause of death in young adults with uncontrolled seizures. First aid guidance to prevent SUDEP, though, has not been previously published because the rarity of monitored cases has made the underlying mechanism difficult to define. This starkly contrasts with the first aid guidelines for sudden cardiac arrest that have been developed based on retrospective studies and expert consensus and the discussion of resuscitation challenges in various American Heart Association certificate courses. However, an increasing amount of evidence from documented SUDEP cases and near misses and from animal models points to a consistent sequence of events that starts with sudden airway occlusion and suggests a mechanistic basis for enhancing seizure first aid. In monitored cases, this sudden airway occlusion associated with seizure activity can be accurately inferred from inductance plethysmography or (depending on recording bandwidth) from electromyographic (EMG) bursts that are associated with inspiratory attempts appearing on the electroencephalogram (EEG) or the electrocardiogram (ECG). In an emergency setting or outside a hospital, seizure first aid can be improved by (1) keeping a lookout for sudden changes in airway status during a seizure, (2) distinguishing thoracic and abdominal movements during attempts to inspire from effective breathing, (3) applying a simple maneuver, the laryngospasm notch maneuver, that may help with airway management when aggressive airway management is unavailable, (4) providing oxygen early as a preventative step to reduce the risk of death, and (5) performing cardiopulmonary resuscitation before the limited post-ictal window of opportunity closes. We propose that these additions to first aid protocols can limit progression of any potential SUDEP case and prevent death. Risk stratification can be improved by recognition of airway occlusion, attendant hypoxia, and need for resuscitation.
Collapse
Affiliation(s)
- Michael Lucchesi
- Department of Emergency Medicine, State University of New York Health Sciences University, Brooklyn, NY, United States
| | - Joshua B Silverman
- Department of Otolaryngology, North Shore Long Island Jewish Medical Center, New Hyde Park, NY, United States
| | - Krishnamurthi Sundaram
- Department of Otolaryngology, State University of New York Health Sciences University, Brooklyn, NY, United States
| | - Richard Kollmar
- Department of Otolaryngology, State University of New York Health Sciences University, Brooklyn, NY, United States.,Department of Cell Biology, State University of New York Health Sciences University, Brooklyn, NY, United States
| | - Mark Stewart
- Department of Neurology, State University of New York Health Sciences University, Brooklyn, NY, United States.,Department of Physiology & Pharmacology, State University of New York Health Sciences University, Brooklyn, NY, United States
| |
Collapse
|
11
|
Budde RB, Pederson DJ, Biggs EN, Jefferys JGR, Irazoqui PP. Mechanisms and prevention of acid reflux induced laryngospasm in seizing rats. Epilepsy Behav 2020; 111:107188. [PMID: 32540771 PMCID: PMC7541801 DOI: 10.1016/j.yebeh.2020.107188] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/04/2020] [Accepted: 05/23/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Recent animal work and limited clinical data have suggested that laryngospasm may be involved in the cardiorespiratory collapse seen in sudden unexpected death in epilepsy (SUDEP). In previous work, we demonstrated in an animal model of seizures that laryngospasm and sudden death were always preceded by acid reflux into the esophagus. Here, we expand on that work by testing several techniques to prevent the acid reflux or the subsequent laryngospasm. METHODS In urethane anesthetized Long Evans rats, we used systemic kainic acid to acutely induce seizure activity. We recorded pH in the esophagus, respiration, electrocorticography activity, and measured the liquid volume in the stomach postmortem. We performed the following three interventions to attempt to prevent acid reflux or laryngospasm and gain insights into mechanisms: fasting animals for 12 h, severing the gastric nerve, and electrical stimulation of either the gastric nerve or the recurrent laryngeal nerve. RESULTS Seizing animals had significantly more liquid in their stomach. Severing the gastric nerve and fasting animals significantly reduced stomach liquid volume, subsequent acid reflux, and sudden death. Laryngeal nerve stimulation can reverse laryngospasm on demand. Seizing animals are more susceptible to death from stomach acid-induced laryngospasm than nonseizing animals are to artificial acid-induced laryngospasm. SIGNIFICANCE These results provide insight into the mechanism of acid production and sudden obstructive apnea in this model. These techniques may have clinical relevance if this model is shown to be similar to human SUDEP.
Collapse
Affiliation(s)
- Ryan B. Budde
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Daniel J. Pederson
- Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
| | - Ethan N. Biggs
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - John G. R. Jefferys
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA,Department of Pharmacology, Oxford University, Oxford, UK,Department of Biochemistry, Oxford University, Oxford, UK
| | - Pedro P. Irazoqui
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA,Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
12
|
Akyuz E, Polat K, Ates S, Unalmis D, Tokpinar A, Yilmaz S, Kaymak E, Doganyigit Z, Villa C. Investigating Cardiac Morphological Alterations in a Pentylenetetrazol-Kindling Model of Epilepsy. Diagnostics (Basel) 2020; 10:diagnostics10060388. [PMID: 32526953 PMCID: PMC7344915 DOI: 10.3390/diagnostics10060388] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/28/2020] [Accepted: 06/06/2020] [Indexed: 12/21/2022] Open
Abstract
Epilepsy is a group of neurological disorders characterized by abnormal electrical activity in the central nervous system (CNS) and recurrent seizures representing the principal clinical manifestation. Sudden unexpected death in epilepsy (SUDEP) is the predominant cause of death in young epileptic patients. SUDEP patients displayed an increased cardiovascular (CV) risk, probably due to an impaired autonomic control of CV functions, but the underlying mechanisms need to be explored yet. Therefore, we aimed to examine the cardiac morphological alterations in a pentylenetetrazol (PTZ)-kindled rat model, a well-established tool for studying chronic epilepsy. To complete this, the distance between the atria, between the atrium and ventricle were measured, the heart was weighed, and the pathological morphology of dissected hearts was analyzed by histological assessment with hematoxylin and eosin staining. A significantly decreased distance between atria and a significant increase in heart weight were observed in PTZ-kindled rats which interestingly also displayed increased hemorrhagic content when compared with controls. Our findings provided evidence that changes in cardiac morphology may be related to autonomic CV dysfunctions occurring during SUDEP while also opening up more avenues to better develop novel drugs for the treatment of this disorder.
Collapse
Affiliation(s)
- Enes Akyuz
- Department of Biophysics, Faculty of Medicine, Yozgat Bozok University, 66100 Yozgat, Turkey
- Correspondence: (E.A.); (C.V.); Tel.: +90-535-762-99-79 (E.A.); +39-02-6448-8138 (C.V.)
| | - Kristina Polat
- Faculty of Medicine, Yozgat Bozok University, 66100 Yozgat, Turkey;
| | - Sukru Ates
- Department of Anatomy, Faculty of Medicine, Yozgat Bozok University, 66100 Yozgat, Turkey; (S.A.); (D.U.); (A.T.); (S.Y.)
| | - Demet Unalmis
- Department of Anatomy, Faculty of Medicine, Yozgat Bozok University, 66100 Yozgat, Turkey; (S.A.); (D.U.); (A.T.); (S.Y.)
| | - Adem Tokpinar
- Department of Anatomy, Faculty of Medicine, Yozgat Bozok University, 66100 Yozgat, Turkey; (S.A.); (D.U.); (A.T.); (S.Y.)
| | - Seher Yilmaz
- Department of Anatomy, Faculty of Medicine, Yozgat Bozok University, 66100 Yozgat, Turkey; (S.A.); (D.U.); (A.T.); (S.Y.)
| | - Emin Kaymak
- Department of Histology and Embriology, Faculty of Medicine, Yozgat Bozok University, 66100 Yozgat, Turkey; (E.K.); (Z.D.)
| | - Zuleyha Doganyigit
- Department of Histology and Embriology, Faculty of Medicine, Yozgat Bozok University, 66100 Yozgat, Turkey; (E.K.); (Z.D.)
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- Correspondence: (E.A.); (C.V.); Tel.: +90-535-762-99-79 (E.A.); +39-02-6448-8138 (C.V.)
| |
Collapse
|
13
|
Cardiac dysregulation following intrahippocampal kainate-induced status epilepticus. Sci Rep 2020; 10:4043. [PMID: 32132552 PMCID: PMC7055295 DOI: 10.1038/s41598-020-60324-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 01/22/2020] [Indexed: 01/21/2023] Open
Abstract
Status epilepticus (SE) is a prevalent disorder associated with significant morbidity, including the development of epilepsy and mortality. Cardiac arrhythmias (i.e. inappropriate sinus tachycardia and bradycardia, asystole, and atrioventricular blocks) are observed in patients following SE. We characterized ictal (during a seizure) and interictal (between seizure) cardiac arrhythmogenesis following SE using continuous electrocardiography and video electroencephalography (vEEG) recordings throughout a 14-day monitoring period in an intrahippocampal chemoconvulsant mouse model that develops epilepsy. We quantified heart rhythm abnormalities and examined whether the frequency of cardiac events correlated with epileptiform activity, circadian (light/dark) cycle, the presence of seizures, and survival during this period of early epileptogenesis (the development of epilepsy) following SE. Shortly following SE, mice developed an increased interictal heart rate and heart rhythm abnormalities (i.e. sinus pause and sinus arrhythmias) when compared to control mice. Heart rhythm abnormalities were more frequent during the light cycle and were not correlated with increased epileptiform activity or seizure frequency. Finally, SE animals had early mortality, and a death event captured during vEEG recording demonstrated severe bradycardia prior to death. These cardiac changes occurred within 14 days after SE and may represent an early risk factor for sudden death following SE.
Collapse
|
14
|
González A, Nome CG, Bendiksen BA, Sjaastad I, Zhang L, Aleksandersen M, Taubøll E, Aurlien D, Heuser K. Assessment of cardiac structure and function in a murine model of temporal lobe epilepsy. Epilepsy Res 2020; 161:106300. [PMID: 32126491 DOI: 10.1016/j.eplepsyres.2020.106300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/28/2020] [Accepted: 02/22/2020] [Indexed: 10/24/2022]
Abstract
Sudden unexpected death in epilepsy (SUDEP) is a significant cause of premature seizure-related death. An association between SUDEP and cardiac remodeling has been suggested. However, whether SUDEP is a direct consequence of acute or recurrent seizures is unsettled. The purpose of this study was to evaluate the impact of status epilepticus (SE) and chronic seizures on myocardial structure and function. We used the intracortical kainate injection model of temporal lobe epilepsy to elicit SE and chronic epilepsy in mice. In total, 24 C57/BL6 mice (13 kainate, 11 sham) were studied 2 and 30 days post-injection. Cardiac structure and function were investigated in-vivo with a 9.4 T MRI, electrocardiography (ECG), echocardiography, and histology [Haematoxylin/Eosin (HE) and Martius Scarlet Blue (MSB)] for staining of collagen proliferation and fibrin accumulation. In conclusion, we did not detect any significant changes in cardiac structure and function neither in mice 2 days nor 30 days post-injection.
Collapse
Affiliation(s)
- Alba González
- Dep. of Neurology, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | - Bård Andre Bendiksen
- Institute for Experimental Medical Research (IEMR), Oslo University Hospital, Ullevål, Oslo, Norway; KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway; Bjørknes University College, Oslo, Norway
| | - Ivar Sjaastad
- Institute for Experimental Medical Research (IEMR), Oslo University Hospital, Ullevål, Oslo, Norway; KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Lili Zhang
- Institute for Experimental Medical Research (IEMR), Oslo University Hospital, Ullevål, Oslo, Norway; KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Mona Aleksandersen
- School of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Erik Taubøll
- Dep. of Neurology, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Dag Aurlien
- Neuroscience Research Group and Dep. of Neurology, Stavanger University Hospital, Stavanger, Norway
| | - Kjell Heuser
- Dep. of Neurology, Oslo University Hospital, Rikshospitalet, Oslo, Norway.
| |
Collapse
|
15
|
Li R, Buchanan GF. Scurrying to Understand Sudden Expected Death in Epilepsy: Insights From Animal Models. Epilepsy Curr 2019; 19:390-396. [PMID: 31526023 PMCID: PMC6891182 DOI: 10.1177/1535759719874787] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death in patients with refractory epilepsy, accounting for up to 17% of deaths in patients with epilepsy. The pathophysiology of SUDEP has remained unclear, largely because it is unpredictable and commonly unwitnessed. This poses a great challenge to studies in patients. Recently, there has been an increase in animal studies to try to better understand the pathophysiology of SUDEP. In this current review, we focus on developments through seizure-induced death models and the preventative strategies they may reveal.
Collapse
Affiliation(s)
- Rui Li
- Department of Neurology, Carver College of Medicine, University of Iowa, IA, USA
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, IA, USA
| | - Gordon F. Buchanan
- Department of Neurology, Carver College of Medicine, University of Iowa, IA, USA
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, IA, USA
| |
Collapse
|
16
|
Effects of enalapril and losartan alone and in combination with sodium valproate on seizures, memory, and cardiac changes in rats. Epilepsy Behav 2019; 92:345-352. [PMID: 30658894 DOI: 10.1016/j.yebeh.2018.12.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/14/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022]
Abstract
PURPOSE Cardiac changes accompanying seizures may be responsible for sudden unexpected death in epilepsy (SUDEP), and drugs with antiseizure and favorable cardiovascular profile could be beneficial. The effect of losartan and enalapril alone and in combination with sodium valproate on seizures, cognition, cardiac histopathology, and serum brain-derived neurotropic factor (BDNF) levels were determined. METHODS Male "Wistar" rats (200-250 g) were administered enalapril (20 mg/kg, intraperitoneally (i.p.)) and losartan (10 mg/kg, i.p.) daily and simultaneously subjected to pentylenetetrazole (PTZ)-kindling (PTZ 30 mg/kg, i.p., every alternate day). Enalapril and losartan were injected 45 & 120 min before seizure stimuli. In another set of experiments, sodium valproate (150 mg/kg, i.p.) alone or in combination with enalapril (20 mg/kg, i.p.) and losartan (10 mg/kg, i.p.) were administered daily during induction of kindling. The effect on seizures and behavior were noted; rats were sacrificed, and blood and hearts were collected for further analysis, i.e., BDNF levels, heart weight-body weight (HWBW) ratio, and cardiac histopathology. RESULTS Losartan, but not enalapril, suppressed the seizure score in PTZ kindling. Sodium valproate alone or in combination with losartan or enalapril prevented kindled seizures. Sodium valproate per se caused cognitive impairment, which was prevented on combining with losartan or enalapril. A decrease in HWBW ratio was observed only in enalapril group (p value = 0.02). Kindling led to cardiac ischemic changes, which could be prevented by losartan and sodium valproate. Serum BDNF level was decreased in PTZ (p value = 0.02) and sodium valproate per se group (p value = 0.04), but sodium valproate could reverse the PTZ-induced decrease in serum BDNF level. CONCLUSION The use of losartan with sodium valproate in epilepsy may prevent the cognitive and cardiac sequelae of seizures. The BDNF levels as a marker for cardiovascular risk in persons with epilepsy (PWE) needs to be explored further.
Collapse
|
17
|
Stewart M. An explanation for sudden death in epilepsy (SUDEP). J Physiol Sci 2018; 68:307-320. [PMID: 29542031 PMCID: PMC10717429 DOI: 10.1007/s12576-018-0602-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/06/2018] [Indexed: 01/02/2023]
Abstract
This review traces the examination of autonomic, cardiovascular, and respiratory derangements associated with seizure activity in the clinical and preclinical literature generally, and in the author's animal model specifically, and concludes with the author's views on the potential mechanisms for sudden death in epilepsy (SUDEP). An animal model that employs kainic acid-induced seizures on a background of urethane anesthesia has permitted unprecedented access to the behavior of autonomic, cardiovascular, and respiratory systems during seizure activity. The result is a detailed description of the major causes of death and how this animal model can be used to develop and test preventative and interventional strategies. A critical translational step was taken when the rat data were shown to directly parallel data from definite SUDEP cases in the clinical literature. The reasons why ventricular fibrillation as a cause of death is so rarely reported and tools for verifying that seizure-associated laryngospasm can induce obstructive apnea as a cause of death are discussed in detail. Many details of the specific kinetics of activation of brainstem neurons serving autonomic and respiratory function remain to be elucidated, but the boundary conditions described in this review provide an excellent framework for more focused studies. A number of studies conducted in animal models of seizure activity and in epilepsy patients have contributed information on the autonomic, cardiovascular, and respiratory consequences of seizure activity spreading through hypothalamus and brainstem to the periphery. The result is detailed information on the systemic impact of seizure spread and the development of an understanding of the essential mechanistic features of sudden unexpected death in epilepsy (SUDEP). This review summarizes translation of data obtained from animal models to biomarkers that are useful in evaluating data from epilepsy patients.
Collapse
Affiliation(s)
- Mark Stewart
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY, 11203, USA.
- Department of Neurology, State University of New York Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY, 11203, USA.
| |
Collapse
|
18
|
Lai YC, Li N, Lawrence W, Wang S, Levine A, Burchhardt DM, Pautler RG, Valderrábano M, Wehrens XH, Anderson AE. Myocardial remodeling and susceptibility to ventricular tachycardia in a model of chronic epilepsy. Epilepsia Open 2018; 3:213-223. [PMID: 29881800 PMCID: PMC5983128 DOI: 10.1002/epi4.12107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2018] [Indexed: 01/08/2023] Open
Abstract
Objective Sympathetic predominance and ventricular repolarization abnormalities represent epilepsy‐associated cardiac alterations and may underlie seizure‐induced ventricular arrhythmias. Myocardial ion channel and electrical remodeling have been described early in epilepsy development and may contribute to ventricular repolarization abnormalities and excitability. Using the pilocarpine‐induced acquired epilepsy model we sought to examine whether altered myocardial ion channel levels and electrophysiological changes also occur in animals with long‐standing epilepsy. Methods We examined myocardial adrenergic receptor and ion channel protein levels of epileptic and age‐matched sham rats (9–20 months old) using western blotting. Cardiac electrical properties were examined using optical mapping ex vivo and electrophysiology in vivo. We investigated the propensity for ventricular tachycardia (VT) and the effects of β‐adrenergic blockade on ventricular electrical properties and excitability in vivo. Results In animals with long‐standing epilepsy, we observed decreased myocardial voltage‐gated K+ channels Kv4.2 and Kv4.3, which are known to underlie early ventricular repolarization in rodents. Decreased β1 and increased α1A adrenergic receptor protein levels occurred in the myocardium of chronically epileptic animals consistent with elevated sympathetic tone. These animals exhibited many cardiac electrophysiological abnormalities, represented by longer QRS and corrected QT (QTc) intervals in vivo, slower conduction velocity ex vivo, and stimulation‐induced VT. Administration of a β‐adrenergic antagonist late in epilepsy was beneficial, as the therapy shortened the QTc interval and decreased stimulation‐induced VT. Significance Our findings demonstrate that myocardial ion channel remodeling and sympathetic predominance, risk factors for increased ventricular excitability and arrhythmias, persist in chronic epilepsy. The beneficial effects of β‐adrenergic antagonist treatment late in the course of epilepsy suggest that attenuating elevated sympathetic tone may represent a therapeutic target for ameliorating epilepsy‐associated cardiac morbidity.
Collapse
Affiliation(s)
- Yi-Chen Lai
- Department of Pediatrics Baylor College of Medicine Houston Texas U.S.A
| | - Na Li
- Department of Molecular Physiology and Biophysics Baylor College of Medicine Houston Texas U.S.A
| | - William Lawrence
- Department of Molecular Physiology and Biophysics Baylor College of Medicine Houston Texas U.S.A
| | - Sufen Wang
- DeBakey Heart and Vascular Center Methodist Hospital Research Institute Houston Texas U.S.A
| | - Amber Levine
- Department of Neuroscience Baylor College of Medicine Houston Texas U.S.A
| | | | - Robia G Pautler
- Department of Molecular Physiology and Biophysics Baylor College of Medicine Houston Texas U.S.A
| | - Miguel Valderrábano
- DeBakey Heart and Vascular Center Methodist Hospital Research Institute Houston Texas U.S.A
| | - Xander H Wehrens
- Department of Molecular Physiology and Biophysics Baylor College of Medicine Houston Texas U.S.A
| | - Anne E Anderson
- Department of Pediatrics Baylor College of Medicine Houston Texas U.S.A.,Department of Neuroscience Baylor College of Medicine Houston Texas U.S.A.,Department of Neurology Baylor College of Medicine Houston Texas U.S.A
| |
Collapse
|
19
|
Sevcencu C, Nielsen TN, Struijk JJ. Changes in vagus nerve activity associated with ictal tachycardia in pigs. Epilepsy Res 2016; 128:52-60. [PMID: 27810517 DOI: 10.1016/j.eplepsyres.2016.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/24/2016] [Accepted: 10/24/2016] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Ictal tachycardia (IT) is common and may pave the way towards cardiac conditions with high risk potential. However, the mechanisms of IT remain obscure and therefore difficult to control. For example, whereas IT is associated with a sympathetic surge, it is unclear why the IT effects are not opposed by baroreflex cardiac inhibition during seizures. As the vagus nerves (VN) are main mediators for such baroreflexes, this study was performed to investigate the VN activity in IT. METHODS The present experiments were performed in ten pigs where IT seizures were induced by controlled infusion of pentylenetetrazole. The electrocorticogram was recorded using a cranial electrode, the electrocardiogram (ECG) using surface electrodes and the blood pressure (BP) using a catheter inserted in the right carotid artery. The VN activity was recorded from both nerves using cuff electrodes and further analyzed in correlation with the cortical seizures and the associated heart rate (HR), BP and HR variability (HRV) changes. RESULTS The cortical seizures progressed from spike-and-wave (SW) to tonic-clonic (TC) discharges associated with ECG, HR and BP changes proportional with this progression and comparable to the IT effects reported in humans. Those IT effects were accompanied by parasympathetic HRV changes, a 20% VN activation (p=0.004) before the onset of TC seizures, a suppression of this VN activation during the TC episode and a rebound VN activation by 79% (left VN, p=0.02) and 57% (right VN, p=0.03) after the TC offset. Further analysis of an afferent BP-related VN component and a mixed VN component showed normal BP-related afferent input and a suppressed efferent output through both nerves during the TC episode. CONCLUSIONS This study indicates a suppressed ictal VN activation and a rebound postictal VN activation, which may account for the absence of baroreflexes during seizures and the postictal cardiac inhibition, respectively.
Collapse
|
20
|
Brewster AL, Marzec K, Hairston A, Ho M, Anderson AE, Lai YC. Early cardiac electrographic and molecular remodeling in a model of status epilepticus and acquired epilepsy. Epilepsia 2016; 57:1907-1915. [PMID: 27555091 DOI: 10.1111/epi.13516] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2016] [Indexed: 01/08/2023]
Abstract
OBJECTIVES A myriad of acute and chronic cardiac alterations are associated with status epilepticus (SE) including increased sympathetic tone, rhythm and ventricular repolarization disturbances. Despite these observations, the molecular processes underlying SE-associated myocardial remodeling remain to be identified. Here we determined early SE-associated myocardial electrical and molecular alterations using a model of SE and acquired epilepsy. METHODS We performed electrocardiography (ECG) assessments in rats beginning at 2 weeks following kainate-induced SE, and calculated short-term variability (STV) of the corrected QT intervals (QTc) as a marker of ventricular stability. Using western blotting, we quantified myocardial β1-adrenergic receptors (β1-AR) and ventricular gap junction protein connexin 43 (Cx43) levels as makers of increased sympathetic tone. We determined the activation status of three kinases associated with sympathetic stimulation and their downstream ion channel targets: extracellular signal-regulated kinase (ERK), protein kinase A (PKA), Ca2+ /calmodulin-dependent protein kinase II (CamKII), hyperpolarization-activated cyclic nucleotide-gated channel subunit 2 (HCN2), and voltage-gated potassium channels 4.2 (Kv4.2 ). We investigated whether SE was associated with altered Ca2+ homeostasis by determining select Ca2+ -handling protein levels using western blotting. RESULTS Compared with the sham group, SE animals exhibited higher heart rate, longer QTc interval, and higher STV beginning at 2 weeks following SE. Concurrently, the myocardium of SE rats showed lower β1-AR and higher Cx43 protein levels, higher levels of phosphorylated ERK, PKA, and CamKII along with decreased HCN2 and Kv4.2 channel levels. In addition, the SE rats had altered proteins levels of Ca2+ -handling proteins, with decreased Na+ /Ca2+ exchanger-1 and increased calreticulin. SIGNIFICANCE SE triggers early molecular alterations in the myocardium consistent with increased sympathetic tone and altered Ca2+ homeostasis. These changes, coupled with early and persistent ECG abnormalities, suggest that the observed molecular alterations may contribute to SE-associated cardiac remodeling. Additional mechanistic studies are needed to determine potential causal roles.
Collapse
Affiliation(s)
- Amy L Brewster
- Department of Psychological Sciences, Purdue University, West Lafayette, Indiana, U.S.A.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, U.S.A
| | - Kyle Marzec
- Department of Psychological Sciences, Purdue University, West Lafayette, Indiana, U.S.A
| | - Alexandria Hairston
- Department of Psychological Sciences, Purdue University, West Lafayette, Indiana, U.S.A
| | - Marvin Ho
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, U.S.A
| | - Anne E Anderson
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, U.S.A.,Department of Neurology, Baylor College of Medicine, Houston, Texas, U.S.A
| | - Yi-Chen Lai
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, U.S.A
| |
Collapse
|
21
|
Bhandare AM, Kapoor K, Farnham MM, Pilowsky PM. Microglia PACAP and glutamate: Friends or foes in seizure-induced autonomic dysfunction and SUDEP? Respir Physiol Neurobiol 2016; 226:39-50. [DOI: 10.1016/j.resp.2016.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/18/2016] [Accepted: 01/21/2016] [Indexed: 12/18/2022]
|
22
|
Pansani AP, Colugnati DB, Scorza CA, de Almeida ACG, Cavalheiro EA, Scorza FA. Furthering our understanding of SUDEP: the role of animal models. Expert Rev Neurother 2016; 16:561-72. [PMID: 27029803 DOI: 10.1586/14737175.2016.1169925] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Sudden and unexpected death in epilepsy (SUDEP) is the most common type of death among patients with epilepsy. Here, we address the importance of the experimental models in search of the mechanisms underlying SUDEP. Most studies have investigated the cardiovascular responses in animal models of epilepsy. However, there are few proposed SUDEP models in literature. Hypoventilation, apnea, respiratory distress, pulmonary hypertension, autonomic dysregulation and arrhythmia are common findings in epilepsy models. Impairments on adenosinergic and serotonergic systems, brainstem spreading depolarization, seizure-activation of neural substrates related to cardiorespiratory control, altered autonomic control, and mutations on sodium and potassium channels are hypothesis suggested. Overall, current research highlights the evident multifactorial nature of SUDEP, which involves acute and chronic aspects ranging from systemic to molecular alterations. Thus, we are convinced that elucidation and prevention of SUDEP can be achieved only through the interaction between basic and clinical science.
Collapse
Affiliation(s)
- Aline P Pansani
- a Laboratório Integrado de Fisiopatologia Cardiovascular e Neurológica. Departamento de Ciências Fisiológicas , Universidade Federal de Goiás , Goiânia , Brasil
| | - Diego B Colugnati
- a Laboratório Integrado de Fisiopatologia Cardiovascular e Neurológica. Departamento de Ciências Fisiológicas , Universidade Federal de Goiás , Goiânia , Brasil
| | - Carla A Scorza
- b Disciplina de Neurociência. Departamento de Neurologia/Neurocirurgia , Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP) , São Paulo , Brasil
| | - Antonio-Carlos G de Almeida
- c Laboratório de Neurociência Experimental e Computacional. Departamento de Engenharia de Biossistemas , Universidade Federal de São João del-Rei , São João del-Rei , Brasil
| | - Esper A Cavalheiro
- b Disciplina de Neurociência. Departamento de Neurologia/Neurocirurgia , Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP) , São Paulo , Brasil
| | - Fulvio A Scorza
- b Disciplina de Neurociência. Departamento de Neurologia/Neurocirurgia , Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP) , São Paulo , Brasil
| |
Collapse
|
23
|
Ruiz-Salinas I, Rocha L, Marichal-Cancino BA, Villalón CM. Cardiovascular Alterations during the Interictal Period in Awake and Pithed Amygdala-Kindled Rats. Basic Clin Pharmacol Toxicol 2016; 119:165-72. [DOI: 10.1111/bcpt.12556] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 01/05/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Inna Ruiz-Salinas
- Department of Pharmacobiology; Cinvestav-Coapa; Tlalpan Mexico City Mexico
| | - Luisa Rocha
- Department of Pharmacobiology; Cinvestav-Coapa; Tlalpan Mexico City Mexico
| | | | - Carlos M. Villalón
- Department of Pharmacobiology; Cinvestav-Coapa; Tlalpan Mexico City Mexico
| |
Collapse
|
24
|
Affiliation(s)
- Alfred L George
- From the Department of Pharmacology and Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL.
| |
Collapse
|
25
|
Pansani AP, Sonoda EY, Scorza FA, Colugnati DB. Premature ventricular complexes: How benign are they in epilepsy? Epilepsy Behav 2015; 52:74-5. [PMID: 26409133 DOI: 10.1016/j.yebeh.2015.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 08/13/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Aline P Pansani
- Laboratório Integrado de Fisiopatologia Cardiovascular e Neurológica/Departamento de Ciências Fisiológicas, ICB/Universidade Federal de Goiás, GO, Brazil
| | - Eliza Y Sonoda
- Disciplina de Neurologia Experimental, Universidade Federal de São Paulo/Escola Paulista de Medicina (UNIFESP/EPM), São Paulo, Brazil
| | - Fulvio A Scorza
- Disciplina de Neurologia Experimental, Universidade Federal de São Paulo/Escola Paulista de Medicina (UNIFESP/EPM), São Paulo, Brazil
| | - Diego B Colugnati
- Laboratório Integrado de Fisiopatologia Cardiovascular e Neurológica/Departamento de Ciências Fisiológicas, ICB/Universidade Federal de Goiás, GO, Brazil.
| |
Collapse
|
26
|
Abstract
Sudden unexpected death in epilepsy is likely caused by a cascade of events affecting the vegetative nervous system leading to cardiorespiratory failure and death. Multiple genetic, electrophysiological, neurochemical, and pharmacological cardiac alterations have been associated with epilepsy, which can affect autonomic regulation of the heart and predispose patients to sudden unexpected death in epilepsy. These cardiac and autonomic changes are more frequently seen in patients with longstanding and medication refractory epilepsy and may be a prerequisite for sudden unexpected death in epilepsy. Cardiac changes are also observed within the immediate periictal period in patients with and without preexisting cardiac pathology and could be the tipping point in the cascade of events compromising autonomic, respiratory, and cardiac function during an epileptic convulsion. Better understanding if and how these cardiac alterations can make a particular individual with epilepsy more susceptible to sudden unexpected death in epilepsy will hopefully lead us to more effective preventative strategies.
Collapse
|
27
|
Fosinopril improves the electrophysiological characteristics of left ventricular hypertrophic myocardium in spontaneously hypertensive rats. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:1037-44. [DOI: 10.1007/s00210-014-1024-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/16/2014] [Indexed: 11/26/2022]
|
28
|
He K, Xiao W, Lv W. Comprehensive identification of essential pathways and transcription factors related to epilepsy by gene set enrichment analysis on microarray datasets. Int J Mol Med 2014; 34:715-24. [PMID: 25016997 PMCID: PMC4121356 DOI: 10.3892/ijmm.2014.1843] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 06/30/2014] [Indexed: 11/06/2022] Open
Abstract
Epilepsy is a common chronic neurological disorder characterized by seizures or convulsions, and is known to affect patients with primary brain tumors. The etiology of epilepsy is superficially thought to be multifactorial; however, the genetic factors which may be involved in the pathogenesis of seizures have not yet been elucidated, particularly at the pathway level. In the present study, in order to systematically investigate the gene regulatory networks involved in epilepsy, we employed a microarray dataset from the public database library of Gene Expression Omnibus (GEO) associated with tumor-induced epileptogenesis and applied gene set enrichment analysis (GSEA) on these data sets and performed candidate transcription factor (TF) selection. As a result, 68 upregulated pathways, including the extracellular matrix (ECM)-receptor interaction (P=0.004) and peroxisome proliferator-activated receptor (PPAR) signaling pathways (P=0.045), as well as 4 downregulated pathways, including the GnRH signaling pathway (P=0.029) and gap junction (P=0.034) were identified as epileptogenesis-related pathways. The majority of these pathways identified have been previously reported and our results were in accordance with those reports. However, some of these pathways identified were novel. Finally, co-expression networks of the related pathways were constructed with the significant core genes and TFs, such as PPAR-γ and phosphatidylethanolamine-binding protein. The results of our study may contribute to the improved understanding of the molecular mechanisms of epileptogenesis on a genome-wide level.
Collapse
Affiliation(s)
- Kan He
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, P.R. China
| | - Weizhong Xiao
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, Shanghai 201399, P.R. China
| | - Wenwen Lv
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, P.R. China
| |
Collapse
|
29
|
Seizure disorder secondary to remote gunshot wound of the head: a case of sudden unexpected death in epilepsy. Forensic Sci Med Pathol 2014; 10:643-6. [PMID: 24771478 DOI: 10.1007/s12024-014-9566-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2014] [Indexed: 10/25/2022]
|