1
|
Triono A, Herini ES, Gunadi. Genetic exploration of Dravet syndrome: two case report. J Med Case Rep 2024; 18:215. [PMID: 38649973 PMCID: PMC11036636 DOI: 10.1186/s13256-024-04514-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Dravet syndrome is an infantile-onset developmental and epileptic encephalopathy (DEE) characterized by drug resistance, intractable seizures, and developmental comorbidities. This article focuses on manifestations in two Indonesian children with Javanese ethnicity who experienced Dravet syndrome with an SCN1A gene mutation, presenting genetic analysis findings using next-generation sequencing. CASE PRESENTATION We present a case series involving two Indonesian children with Javanese ethnicity whom had their first febrile seizure at the age of 3 months, triggered after immunization. Both patients had global developmental delay and intractable seizures. We observed distinct genetic findings in both our cases. The first patient revealed heterozygous deletion mutation in three genes (TTC21B, SCN1A, and SCN9A). In our second patient, previously unreported mutation was discovered at canonical splice site upstream of exon 24 of the SCN1A gene. Our patient's outcomes improved after therapeutic evaluation based on mutation findings When comparing clinical manifestations in our first and second patients, we found that the more severe the genetic mutation discovered, the more severe the patient's clinical manifestations. CONCLUSION These findings emphasize the importance of comprehensive genetic testing beyond SCN1A, providing valuable insights for personalized management and tailored therapeutic interventions in patients with Dravet syndrome. Our study underscores the potential of next-generation sequencing in advancing genotype-phenotype correlations and enhancing diagnostic precision for effective disease management.
Collapse
Affiliation(s)
- Agung Triono
- Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito Hospital, Jl. Kesehatan No. 1, Yogyakarta, 55281, Indonesia
| | - Elisabeth Siti Herini
- Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito Hospital, Jl. Kesehatan No. 1, Yogyakarta, 55281, Indonesia.
| | - Gunadi
- Pediatric Surgery Division, Department of Surgery/Genetics Working Group/Translational Research Unit, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito Hospital, Yogyakarta, 55281, Indonesia
| |
Collapse
|
2
|
Tolezano GC, Bastos GC, da Costa SS, Freire BL, Homma TK, Honjo RS, Yamamoto GL, Passos-Bueno MR, Koiffmann CP, Kim CA, Vianna-Morgante AM, de Lima Jorge AA, Bertola DR, Rosenberg C, Krepischi ACV. Burden of Rare Copy Number Variants in Microcephaly: A Brazilian Cohort of 185 Microcephalic Patients and Review of the Literature. J Autism Dev Disord 2024; 54:1181-1212. [PMID: 36502452 DOI: 10.1007/s10803-022-05853-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2022] [Indexed: 12/14/2022]
Abstract
Microcephaly presents heterogeneous genetic etiology linked to several neurodevelopmental disorders (NDD). Copy number variants (CNVs) are a causal mechanism of microcephaly whose investigation is a crucial step for unraveling its molecular basis. Our purpose was to investigate the burden of rare CNVs in microcephalic individuals and to review genes and CNV syndromes associated with microcephaly. We performed chromosomal microarray analysis (CMA) in 185 Brazilian patients with microcephaly and evaluated microcephalic patients carrying < 200 kb CNVs documented in the DECIPHER database. Additionally, we reviewed known genes and CNV syndromes causally linked to microcephaly through the PubMed, OMIM, DECIPHER, and ClinGen databases. Rare clinically relevant CNVs were detected in 39 out of the 185 Brazilian patients investigated by CMA (21%). In 31 among the 60 DECIPHER patients carrying < 200 kb CNVs, at least one known microcephaly gene was observed. Overall, four gene sets implicated in microcephaly were disclosed: known microcephaly genes; genes with supporting evidence of association with microcephaly; known macrocephaly genes; and novel candidates, including OTUD7A, BBC3, CNTN6, and NAA15. In the review, we compiled 957 known microcephaly genes and 58 genomic CNV loci, comprising 13 duplications and 50 deletions, which have already been associated with clinical findings including microcephaly. We reviewed genes and CNV syndromes previously associated with microcephaly, reinforced the high CMA diagnostic yield for this condition, pinpointed novel candidate loci linked to microcephaly deserving further evaluation, and provided a useful resource for future research on the field of neurodevelopment.
Collapse
Affiliation(s)
- Giovanna Cantini Tolezano
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, 106 Rua do Matão, São Paulo, SP, 05508-090, Brazil
| | - Giovanna Civitate Bastos
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, 106 Rua do Matão, São Paulo, SP, 05508-090, Brazil
| | - Silvia Souza da Costa
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, 106 Rua do Matão, São Paulo, SP, 05508-090, Brazil
| | - Bruna Lucheze Freire
- Unidade de Endocrinologia Genética (LIM25), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 455 Avenida Doutor Arnaldo, São Paulo, SP, 01246-903, Brazil
| | - Thais Kataoka Homma
- Unidade de Endocrinologia Genética (LIM25), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 455 Avenida Doutor Arnaldo, São Paulo, SP, 01246-903, Brazil
| | - Rachel Sayuri Honjo
- Unidade de Genética do Instituto da Criança, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 647 Avenida Doutor Enéas Carvalho de Aguiar, São Paulo, SP, 05403-900, Brazil
| | - Guilherme Lopes Yamamoto
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, 106 Rua do Matão, São Paulo, SP, 05508-090, Brazil
- Unidade de Genética do Instituto da Criança, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 647 Avenida Doutor Enéas Carvalho de Aguiar, São Paulo, SP, 05403-900, Brazil
| | - Maria Rita Passos-Bueno
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, 106 Rua do Matão, São Paulo, SP, 05508-090, Brazil
| | - Celia Priszkulnik Koiffmann
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, 106 Rua do Matão, São Paulo, SP, 05508-090, Brazil
| | - Chong Ae Kim
- Unidade de Genética do Instituto da Criança, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 647 Avenida Doutor Enéas Carvalho de Aguiar, São Paulo, SP, 05403-900, Brazil
| | - Angela Maria Vianna-Morgante
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, 106 Rua do Matão, São Paulo, SP, 05508-090, Brazil
| | - Alexander Augusto de Lima Jorge
- Unidade de Endocrinologia Genética (LIM25), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 455 Avenida Doutor Arnaldo, São Paulo, SP, 01246-903, Brazil
| | - Débora Romeo Bertola
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, 106 Rua do Matão, São Paulo, SP, 05508-090, Brazil
- Unidade de Genética do Instituto da Criança, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 647 Avenida Doutor Enéas Carvalho de Aguiar, São Paulo, SP, 05403-900, Brazil
| | - Carla Rosenberg
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, 106 Rua do Matão, São Paulo, SP, 05508-090, Brazil
| | - Ana Cristina Victorino Krepischi
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, 106 Rua do Matão, São Paulo, SP, 05508-090, Brazil.
- Institute of Biosciences, University of São Paulo, 277 Rua do Matão, São Paulo, SP, 05508-090, Brazil.
| |
Collapse
|
3
|
Bagnall RD, Perucca P. ILAE Genetic Literacy Series: Postmortem Genetic Testing in Sudden Unexpected Death in Epilepsy. Epileptic Disord 2023; 25:472-479. [PMID: 37340991 DOI: 10.1002/epd2.20090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/31/2023] [Accepted: 06/17/2023] [Indexed: 06/22/2023]
Abstract
A 24-year-old man with non-lesional bitemporal lobe epilepsy since age 16 years was found dead in bed around midday. He was last seen the previous night when he was witnessed to have a tonic-clonic seizure. Before his death, he was experiencing weekly focal impaired awareness seizures and up to two focal-to-bilateral tonic-clonic seizures each year. He had trialed several antiseizure medications and was on levetiracetam 1500 mg/day, lamotrigine 400 mg/day, and clobazam 10 mg/day at the time of death. Other than epilepsy, his medical history was unremarkable. Of note, he had an older brother with a history of febrile seizures and a paternal first cousin with epilepsy. No cause of death was identified following a comprehensive postmortem investigation. The coroner classified the death as "sudden unexpected death in epilepsy" (SUDEP), and it would qualify as "definite SUDEP" using the current definitions.1 This left the family with many questions unanswered; in particular, they wish to know what caused the death and whether it could happen to other family members. Could postmortem genetic testing identify a cause of death, provide closure to the family, and facilitate cascade genetic testing of first-degree family members who may be at risk of sudden death? While grieving family members struggle with uncertainty about the cause of death, we as clinicians also face similar uncertainties about genetic contributions to SUDEP, especially when the literature is sparse, and the utility of genetic testing is still being worked out. We aim to shed some light on this topic, highlighting areas where data is emerging but also areas where uncertainty remains, keeping our case in mind as we examine this clinically important area.
Collapse
Affiliation(s)
- Richard D Bagnall
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Piero Perucca
- Department of Medicine (Austin Health), Epilepsy Research Centre, The University of Melbourne, Melbourne, Victoria, Australia
- Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Melbourne, Victoria, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Neurology, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Matricardi S, Cestèle S, Trivisano M, Kassabian B, Leroudier N, Vittorini R, Nosadini M, Cesaroni E, Siliquini S, Marinaccio C, Longaretti F, Podestà B, Operto FF, Luisi C, Sartori S, Boniver C, Specchio N, Vigevano F, Marini C, Mantegazza M. Gain of function SCN1A disease-causing variants: Expanding the phenotypic spectrum and functional studies guiding the choice of effective antiseizure medication. Epilepsia 2023; 64:1331-1347. [PMID: 36636894 DOI: 10.1111/epi.17509] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023]
Abstract
OBJECTIVE This study was undertaken to refine the spectrum of SCN1A epileptic disorders other than Dravet syndrome (DS) and genetic epilepsy with febrile seizures plus (GEFS+) and optimize antiseizure management by correlating phenotype-genotype relationship and functional consequences of SCN1A variants in a cohort of patients. METHODS Sixteen probands carrying SCN1A pathogenic variants were ascertained via a national collaborative network. We also performed a literature review including individuals with SCN1A variants causing non-DS and non-GEFS+ phenotypes and compared the features of the two cohorts. Whole cell patch clamp experiments were performed for three representative SCN1A pathogenic variants. RESULTS Nine of the 16 probands (56%) had de novo pathogenic variants causing developmental and epileptic encephalopathy (DEE) with seizure onset at a median age of 2 months and severe intellectual disability. Seven of the 16 probands (54%), five with inherited and two with de novo variants, manifested focal epilepsies with mild or no intellectual disability. Sodium channel blockers never worsened seizures, and 50% of patients experienced long periods of seizure freedom. We found 13 SCN1A missense variants; eight of them were novel and never reported. Functional studies of three representative variants showed a gain of channel function. The literature review led to the identification of 44 individuals with SCN1A variants and non-DS, non-GEFS+ phenotypes. The comparison with our cohort highlighted that DEE phenotypes are a common feature. SIGNIFICANCE The boundaries of SCN1A disorders are wide and still expanding. In our cohort, >50% of patients manifested focal epilepsies, which are thus a frequent feature of SCN1A pathogenic variants beyond DS and GEFS+. SCN1A testing should therefore be included in the diagnostic workup of pediatric, familial and nonfamilial, focal epilepsies. Alternatively, non-DS/non-GEFS+ phenotypes might be associated with gain of channel function, and sodium channel blockers could control seizures by counteracting excessive channel function. Functional analysis evaluating the consequences of pathogenic SCN1A variants is thus relevant to tailor the appropriate antiseizure medication.
Collapse
Affiliation(s)
- Sara Matricardi
- Child Neurology and Psychiatry Unit, "G. Salesi" Children's Hospital, Ospedali Riuniti Ancona, Ancona, Italy
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | - Sandrine Cestèle
- Côte d'Azur University, Valbonne-Sophia Antipolis, France
- CNRS UMR7275, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France
| | - Marina Trivisano
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Full member of European Reference Network EpiCARE, Rome, Italy
| | - Benedetta Kassabian
- Neurology Unit, Department of Neuroscience, University of Padua, Padua, Italy
| | - Nathalie Leroudier
- Côte d'Azur University, Valbonne-Sophia Antipolis, France
- CNRS UMR7275, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France
| | - Roberta Vittorini
- Child and Adolescence Neuropsychiatry Service, Department of Child Pathology and Cure, Regina Margherita Children's Hospital, Turin, Italy
| | - Margherita Nosadini
- Pediatric Neurology and Neurophysiology Unit, Department of Women and Children's Health, University of Padua, Padua, Italy
| | - Elisabetta Cesaroni
- Child Neurology and Psychiatry Unit, "G. Salesi" Children's Hospital, Ospedali Riuniti Ancona, Ancona, Italy
| | - Sabrina Siliquini
- Child Neurology and Psychiatry Unit, "G. Salesi" Children's Hospital, Ospedali Riuniti Ancona, Ancona, Italy
| | - Cristina Marinaccio
- Child and Adolescence Neuropsychiatry Service, Department of Child Pathology and Cure, Regina Margherita Children's Hospital, Turin, Italy
| | - Francesca Longaretti
- Child and Adolescence Neuropsychiatry Service, S. Croce and Carle Hospital, Cuneo, Italy
| | - Barbara Podestà
- Child and Adolescence Neuropsychiatry Service, S. Croce and Carle Hospital, Cuneo, Italy
| | - Francesca Felicia Operto
- Child and Adolescent Neuropsychiatry Unit, Department of Medicine, Surgery, and Dentistry, University of Salerno, Salerno, Italy
| | - Concetta Luisi
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Full member of European Reference Network EpiCARE, Rome, Italy
- Neurology Unit, Department of Neuroscience, University of Padua, Padua, Italy
| | - Stefano Sartori
- Pediatric Neurology and Neurophysiology Unit, Department of Women and Children's Health, University of Padua, Padua, Italy
| | - Clementina Boniver
- Pediatric Neurology and Neurophysiology Unit, Department of Women and Children's Health, University of Padua, Padua, Italy
| | - Nicola Specchio
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Full member of European Reference Network EpiCARE, Rome, Italy
| | - Federico Vigevano
- Neurology Unit, Department of Neuroscience, Bambino Gesù, IRCCS Children's Hospital, Full member of European Reference Network EpiCARE, Rome, Italy
| | - Carla Marini
- Child Neurology and Psychiatry Unit, "G. Salesi" Children's Hospital, Ospedali Riuniti Ancona, Ancona, Italy
| | - Massimo Mantegazza
- Côte d'Azur University, Valbonne-Sophia Antipolis, France
- CNRS UMR7275, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France
- Inserm, Valbonne-Sophia Antipolis, France
| |
Collapse
|
5
|
Yu C, Deng XJ, Xu D. Gene mutations in comorbidity of epilepsy and arrhythmia. J Neurol 2023; 270:1229-1248. [PMID: 36376730 DOI: 10.1007/s00415-022-11430-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022]
Abstract
Epilepsy is one of the most common neurological disorders, and sudden unexpected death in epilepsy (SUDEP) is the most severe outcome of refractory epilepsy. Arrhythmia is one of the heterogeneous factors in the pathophysiological mechanism of SUDEP with a high incidence in patients with refractory epilepsy, increasing the risk of premature death. The gene co-expressed in the brain and heart is supposed to be the genetic basis between epilepsy and arrhythmia, among which the gene encoding ion channel contributes to the prevalence of "cardiocerebral channelopathy" theory. Nevertheless, this theory could only explain the molecular mechanism of comorbid arrhythmia in part of patients with epilepsy (PWE). Therefore, we summarized the mutant genes that can induce comorbidity of epilepsy and arrhythmia and the possible corresponding treatments. These variants involved the genes encoding sodium, potassium, calcium and HCN channels, as well as some non-ion channel coding genes such as CHD4, PKP2, FHF1, GNB5, and mitochondrial genes. The relationship between genotype and clinical phenotype was not simple linear. Indeed, genes co-expressed in the brain and heart could independently induce epilepsy and/or arrhythmia. Mutant genes in brain could affect cardiac rhythm through central or peripheral regulation, while in the heart it could also affect cerebral electrical activity by changing the hemodynamics or internal environment. Analysis of mutations in comorbidity of epilepsy and arrhythmia could refine and expand the theory of "cardiocerebral channelopathy" and provide new insights for risk stratification of premature death and corresponding precision therapy in PWE.
Collapse
Affiliation(s)
- Cheng Yu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China
| | - Xue-Jun Deng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China
| | - Da Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China.
| |
Collapse
|
6
|
A Complex Genomic Rearrangement Resulting in Loss of Function of SCN1A and SCN2A in a Patient with Severe Developmental and Epileptic Encephalopathy. Int J Mol Sci 2022; 23:ijms232112900. [DOI: 10.3390/ijms232112900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Complex genomic rearrangements (CGRs) are structural variants arising from two or more chromosomal breaks, which are challenging to characterize by conventional or molecular cytogenetic analysis (karyotype and FISH). The integrated approach of standard and genomic techniques, including optical genome mapping (OGM) and genome sequencing, is crucial for disclosing and characterizing cryptic chromosomal rearrangements at high resolutions. We report on a patient with a complex developmental and epileptic encephalopathy in which karyotype analysis showed a de novo balanced translocation involving the long arms of chromosomes 2 and 18. Microarray analysis detected a 194 Kb microdeletion at 2q24.3 involving the SCN2A gene, which was considered the likely translocation breakpoint on chromosome 2. However, OGM redefined the translocation breakpoints by disclosing a paracentric inversion at 2q24.3 disrupting SCN1A. This combined genomic high-resolution approach allowed a fine characterization of the CGR, which involves two different chromosomes with four breakpoints. The patient’s phenotype resulted from the concomitant loss of function of SCN1A and SCN2A.
Collapse
|
7
|
Mangano GD, Antona V, Calì E, Fontana A, Salpietro V, Houlden H, Veggiotti P, Nardello R. A complex epileptic and dysmorphic phenotype associated with a novel frameshift KDM5B variant and deletion of SCN gene cluster. Seizure 2022; 97:20-22. [DOI: 10.1016/j.seizure.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/31/2022] [Accepted: 03/01/2022] [Indexed: 10/18/2022] Open
|
8
|
Ding J, Li X, Tian H, Wang L, Guo B, Wang Y, Li W, Wang F, Sun T. SCN1A Mutation-Beyond Dravet Syndrome: A Systematic Review and Narrative Synthesis. Front Neurol 2022; 12:743726. [PMID: 35002916 PMCID: PMC8739186 DOI: 10.3389/fneur.2021.743726] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/29/2021] [Indexed: 12/28/2022] Open
Abstract
Background:SCN1A is one of the most common epilepsy genes. About 80% of SCN1A gene mutations cause Dravet syndrome (DS), which is a severe and catastrophic epileptic encephalopathy. More than 1,800 mutations have been identified in SCN1A. Although it is known that SCN1A is the main cause of DS and genetic epilepsy with febrile seizures plus (GEFS+), there is a dearth of information on the other related diseases caused by mutations of SCN1A. Objective: The aim of this study is to systematically review the literature associated with SCN1A and other non-DS-related disorders. Methods: We searched PubMed and SCOPUS for all the published cases related to gene mutations of SCN1A until October 20, 2021. The results reported by each study were summarized narratively. Results: The PubMed and SCOPUS search yielded 2,889 items. A total of 453 studies published between 2005 and 2020 met the final inclusion criteria. Overall, 303 studies on DS, 93 on GEFS+, three on Doose syndrome, nine on the epilepsy of infancy with migrating focal seizures (EIMFS), six on the West syndrome, two on the Lennox–Gastaut syndrome (LGS), one on the Rett syndrome, seven on the nonsyndromic epileptic encephalopathy (NEE), 19 on hemiplegia migraine, six on autism spectrum disorder (ASD), two on nonepileptic SCN1A-related sudden deaths, and two on the arthrogryposis multiplex congenital were included. Conclusion: Aside from DS, SCN1A also causes other epileptic encephalopathies, such as GEFS+, Doose syndrome, EIMFS, West syndrome, LGS, Rett syndrome, and NEE. In addition to epilepsy, hemiplegic migraine, ASD, sudden death, and arthrogryposis multiplex congenital can also be caused by mutations of SCN1A.
Collapse
Affiliation(s)
- Jiangwei Ding
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Xinxiao Li
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haiyan Tian
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Wang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China.,Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Baorui Guo
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Yangyang Wang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China.,Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Wenchao Li
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China.,Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Feng Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Sun
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
9
|
Long-term course of early onset developmental and epileptic encephalopathy associated with 2q24.3 microduplication. Epilepsy Behav Rep 2022; 19:100547. [PMID: 35733834 PMCID: PMC9207545 DOI: 10.1016/j.ebr.2022.100547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/25/2022] Open
Abstract
2q24.3 is a region containing a cluster of genes for multiple voltage-gated sodium channels and CNVs in the region cause developmental and epileptic encephalopathy. DEE associated with 2q24.3 duplication have been reported to show early-onset epilepsy, resistant to antiseizure drugs, and severe developmental delay. Drug-resistant epilepsy due to 2q24.3 duplication can be seizure free after infancy. Our case was considered pyridoxine dependent but identifying duplication of 2q24.3 led to the discontinuation of unnecessary medication.
Copy number variations (CNVs) have been related to developmental and epileptic encephalopathy (DEE). The 2q24.3 region includes a cluster of genes for voltage-gated sodium channels (SCN) and CNVs in this region cause DEE. However, the long-term course of DEE with a 2q24.3 duplication has not been described. A 20-year-old female developed epileptic encephalopathy in early infancy that was resistant to various antiseizure medications. Her seizures disappeared after starting vitamin B6 therapy. Therefore, her epilepsy was considered pyridoxine-dependent epilepsy. At 16 years old, whole exome sequencing revealed a 2q24.3 microduplication including SCN1A, SCN2A, SCN3A, SCN7A, and SCN9A. Quantitative PCR detected an increased copy number of 1.3 Mb on 2q24.3 involving these genes, but no gene mutation accounting for pyridoxine-dependent epilepsy. Considering that with this duplication she was reported to be seizure-free after infancy, she was able to be off antiseizure medications including vitamin B6. Our case involvingdrug-resistant epilepsy in early infancy had no recurrent seizures during long-term follow up. Detecting CNVs using whole exome sequencing data was useful to identify a 2q24.3 duplication unassociated with pyridoxine-dependent epilepsy, leading to cessation of unnecessary medications.
Collapse
|
10
|
Turkdogan D, Turkyilmaz A, Sager G, Ozturk G, Unver O, Say M. Chromosomal microarray and exome sequencing in unexplained early infantile epileptic encephalopathies in a highly consanguineous population. Int J Neurosci 2021:1-18. [PMID: 34380004 DOI: 10.1080/00207454.2021.1967349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AIM To identify genetic causes for early infantile epileptic encephalopathies (EIEE) in Turkish children with mostly consanguineous parents. METHODS In a selected EIEE group (N = 59) based on results of nongenetic and initial genetic testing with unexplained etiology, 49 patients underwent array-based comparative genomic hybridization (aCGH) and 49 patients underwent whole exome sequencing (WES) including 39 with negative aCGH results and 10 with WES-only. RESULTS Diagnostic yield of aCGH and WES for pathogenic or likely pathogenic variants was 14.3% and 38.8%, respectively. Including de novo variants of uncertain significance linked to compatible phenotypes, increased the diagnostic yield of WES to 61.2%. Out of 38 positive variants, 18 (47.4%) were novel and 16 (42.1%) were de novo. Twenty-one (56.8%) patients had recessive variants inherited from mostly consanguineous healthy parents (85.7%). Fourteen (37.8%) of patients with diagnostic results had positive variants in established EIEE genes. Seizures started during neonatal period in 32.4% patients. Posture or movement disorders were comorbid with EIEE in 40.5% of diagnosed patients. We identified treatable metabolic disorders in 8.1% of patients and pathogenic variants in genes which support using targeted medicine in 19% of patients. CONCLUSIONS Detailed electro-clinical phenotyping led to expansion of some of the known phenotypes with non-neurological and neurological findings in addition to seizures, as well as suggestion of candidate genes (SEC24B, SLC16A2 and PRICKLE2) and a copy number variant (microduplication of Xp21.1p11.4). The high ratio of recessive inheritance could be important for family counseling.
Collapse
Affiliation(s)
- Dilsad Turkdogan
- Medical Faculty, Department of Pediatric Neurology, Marmara University, Pendik, Istanbul, Turkey
| | - Ayberk Turkyilmaz
- Medical Faculty, Department of Medical Genetics, Marmara University, Pendik, Istanbul, Turkey
| | - Gunes Sager
- Medical Faculty, Department of Pediatric Neurology, Marmara University, Pendik, Istanbul, Turkey
| | - Gulten Ozturk
- Medical Faculty, Department of Pediatric Neurology, Marmara University, Pendik, Istanbul, Turkey
| | - Olcay Unver
- Medical Faculty, Department of Pediatric Neurology, Marmara University, Pendik, Istanbul, Turkey
| | - Merve Say
- Bioinformatics, Private Practice, Kadıkoy, Istanbul, Turkey
| |
Collapse
|
11
|
Identification and successful management of near-lethal ventricular tachycardia in 2q24 deletion-associated developmental and epileptic encephalopathy. Seizure 2021; 91:146-149. [PMID: 34161902 DOI: 10.1016/j.seizure.2021.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 11/21/2022] Open
|
12
|
Zhang L, Li W, Wang C. Efficacy and safety of fenfluramine in patients with Dravet syndrome: A meta-analysis. Acta Neurol Scand 2021; 143:339-348. [PMID: 33336426 DOI: 10.1111/ane.13387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 11/03/2020] [Accepted: 11/29/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Dravet syndrome (DS) is a severe, drug-resistant, developmental epileptic encephalopathy. Despite multiple anti-epileptic drug regimens, the syndrome remains poorly controlled and nearly half of patients still experience at least four tonic-clonic seizure per month. Recently, several clinical trials demonstrated that fenfluramine may provide a significant reduction in convulsive seizure frequency in the treatment of Dravet syndrome. METHODS A computerized literature search of Web of Science, MEDLINE (Ovid and PubMed), Cochrane Library, EMBASE, and Google Scholar was performed from inception until December 31, 2019. We included randomized placebo-controlled trials for the treatment of Dravet syndrome. We calculated the risk ratio (RR) of ≥50% and 100% reduction seizure frequency from baseline, along with the treatment-related withdrawals and serious adverse events, using the fixed-effect model. Quality assessment of included studies was performed with the Cochrane Collaboration's tool. KEY RESULTS Two trials with a total of 206 patients were included. The pooled RR of 5.49 (95% CI 3.13-9.65) showed that a significantly greater proportion in the fenfluramine group achieved ≥50% reduction in monthly convulsive seizure frequency (MCSF). As for the complete seizure free rate, the pooled RR of 5.75 (95% CI 1.03-32.07) also demonstrated the favorable efficacy of fenfluramine, even though the difference was not statistically significant (p = 0.046). However, a significantly greater proportion of patients in the fenfluramine group experienced no more than one seizure during the treatment period (RR 13.82, 95% CI 2.68-71.27, p = 0.002). There were no significant differences in withdrawals and serious adverse events between the two treatment groups. No valvular heart disease or pulmonary arterial hypertension was observed in participants. The most common adverse events reported by included trials were diarrhea, fatigue, lethargy, nasopharyngitis, pyrexia, seizure, decreased appetite, and weight loss. CONCLUSIONS Fenfluramine is an effective antiepileptic drug for pediatric patients with Dravet syndrome, demonstrating clinically meaningful reduction in convulsive frequency, and generally could be well tolerated.
Collapse
Affiliation(s)
- Lanlan Zhang
- Department of Pediatrics Yancheng Maternal and Children's Health Hospital Yancheng China
| | - Wei Li
- Department of Medical Imaging Jiangsu Vocational College of Medicine Yancheng China
| | - Chengzhong Wang
- Department of Pediatrics Yancheng Maternal and Children's Health Hospital Yancheng China
| |
Collapse
|
13
|
Trollmann R. Neuromonitoring in Neonatal-Onset Epileptic Encephalopathies. Front Neurol 2021; 12:623625. [PMID: 33603712 PMCID: PMC7884638 DOI: 10.3389/fneur.2021.623625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/12/2021] [Indexed: 12/31/2022] Open
Abstract
Considering the wide spectrum of etiologies of neonatal-onset epileptic encephalopathies (EE) and their unfavorable consequences for neurodevelopmental prognoses, neuromonitoring at-risk neonates is increasingly important. EEG is highly sensitive for early identification of electrographic seizures and abnormal background activity. Amplitude-integrated EEG (aEEG) is recommended as a useful bedside monitoring method but as a complementary tool because of methodical limitations. It is of special significance in monitoring neonates with acute symptomatic as well as structural, metabolic and genetic neonatal-onset EE, being at high risk of electrographic-only and prolonged seizures. EEG/aEEG monitoring is established as an adjunctive tool to confirm perinatal hypoxic-ischemic encephalopathy (HIE). In neonates with HIE undergoing therapeutic hypothermia, burst suppression pattern is associated with good outcomes in about 40% of the patients. The prognostic specificity of EEG/aEEG is lower compared to cMRI. As infants with HIE may develop seizures after cessation of hypothermia, recording for at least 24 h after the last seizure is recommended. Progress in the identification of genetic etiology of neonatal EE constantly increases. However, presently, no specific EEG changes indicative of a genetic variant have been characterized, except for individual variants associated with typical EEG patterns (e.g., KCNQ2, KCNT1). Long-term monitoring studies are necessary to define and classify electro-clinical patterns of neonatal-onset EE.
Collapse
Affiliation(s)
- Regina Trollmann
- Department of Pediatrics and Pediatric Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
14
|
Uchiyama Y, Yamaguchi D, Iwama K, Miyatake S, Hamanaka K, Tsuchida N, Aoi H, Azuma Y, Itai T, Saida K, Fukuda H, Sekiguchi F, Sakaguchi T, Lei M, Ohori S, Sakamoto M, Kato M, Koike T, Takahashi Y, Tanda K, Hyodo Y, Honjo RS, Bertola DR, Kim CA, Goto M, Okazaki T, Yamada H, Maegaki Y, Osaka H, Ngu LH, Siew CG, Teik KW, Akasaka M, Doi H, Tanaka F, Goto T, Guo L, Ikegawa S, Haginoya K, Haniffa M, Hiraishi N, Hiraki Y, Ikemoto S, Daida A, Hamano SI, Miura M, Ishiyama A, Kawano O, Kondo A, Matsumoto H, Okamoto N, Okanishi T, Oyoshi Y, Takeshita E, Suzuki T, Ogawa Y, Handa H, Miyazono Y, Koshimizu E, Fujita A, Takata A, Miyake N, Mizuguchi T, Matsumoto N. Efficient detection of copy-number variations using exome data: Batch- and sex-based analyses. Hum Mutat 2020; 42:50-65. [PMID: 33131168 DOI: 10.1002/humu.24129] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/29/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022]
Abstract
Many algorithms to detect copy number variations (CNVs) using exome sequencing (ES) data have been reported and evaluated on their sensitivity and specificity, reproducibility, and precision. However, operational optimization of such algorithms for a better performance has not been fully addressed. ES of 1199 samples including 763 patients with different disease profiles was performed. ES data were analyzed to detect CNVs by both the eXome Hidden Markov Model (XHMM) and modified Nord's method. To efficiently detect rare CNVs, we aimed to decrease sequencing biases by analyzing, at the same time, the data of all unrelated samples sequenced in the same flow cell as a batch, and to eliminate sex effects of X-linked CNVs by analyzing female and male sequences separately. We also applied several filtering steps for more efficient CNV selection. The average number of CNVs detected in one sample was <5. This optimization together with targeted CNV analysis by Nord's method identified pathogenic/likely pathogenic CNVs in 34 patients (4.5%, 34/763). In particular, among 142 patients with epilepsy, the current protocol detected clinically relevant CNVs in 19 (13.4%) patients, whereas the previous protocol identified them in only 14 (9.9%) patients. Thus, this batch-based XHMM analysis efficiently selected rare pathogenic CNVs in genetic diseases.
Collapse
Affiliation(s)
- Yuri Uchiyama
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan.,Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | - Kazuhiro Iwama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Clinical Genetics Department, Yokohama City University Hospital, Yokohama, Japan
| | - Kohei Hamanaka
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naomi Tsuchida
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan.,Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiromi Aoi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Obstetrics and Gynecology, Faculty of Medicine Juntendo University, Tokyo, Japan
| | - Yoshiteru Azuma
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Toshiyuki Itai
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ken Saida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiromi Fukuda
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Futoshi Sekiguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tomohiro Sakaguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ming Lei
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Sachiko Ohori
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masamune Sakamoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | - Takayoshi Koike
- National Epilepsy Center, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
| | - Yukitoshi Takahashi
- National Epilepsy Center, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
| | - Koichi Tanda
- Department of Pediatrics, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Yuki Hyodo
- Department of Child Neurology, Okayama University Hospital, Okayama, Japan
| | - Rachel S Honjo
- Unidade de Genetica do Instituto da Crianca do Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Debora Romeo Bertola
- Unidade de Genetica do Instituto da Crianca do Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Chong Ae Kim
- Unidade de Genetica do Instituto da Crianca do Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Masahide Goto
- Department of Pediatrics, Jichi Medical University, Shimotsuke, Japan
| | - Tetsuya Okazaki
- Department of Brain and Neurosciences, Division of Child Neurology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Hiroyuki Yamada
- Department of Brain and Neurosciences, Division of Child Neurology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Yoshihiro Maegaki
- Department of Brain and Neurosciences, Division of Child Neurology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Hitoshi Osaka
- Department of Pediatrics, Jichi Medical University, Shimotsuke, Japan
| | - Lock-Hock Ngu
- Department of Genetics, Kuala Lumpur Hospital, Kuala Lumpur, Malaysia
| | - Ch'ng G Siew
- Department of Genetics, Kuala Lumpur Hospital, Kuala Lumpur, Malaysia
| | - Keng W Teik
- Department of Genetics, Kuala Lumpur Hospital, Kuala Lumpur, Malaysia
| | - Manami Akasaka
- Department of Pediatrics, Iwate Medical University School of Medicine, Morioka, Japan
| | - Hiroshi Doi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tomohide Goto
- Division of Neurology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Long Guo
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Kazuhiro Haginoya
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai, Japan
| | - Muzhirah Haniffa
- Department of Genetics, Kuala Lumpur Hospital, Kuala Lumpur, Malaysia
| | - Nozomi Hiraishi
- Department of Pediatrics, Yokohama City University Medical Center, Yokohama, Japan
| | - Yoko Hiraki
- Hiroshima Municipal Center for Child Health and Development, Hiroshima, Japan
| | - Satoru Ikemoto
- Division of Neurology, Saitama Children's Medical Center, Saitama, Japan
| | - Atsuro Daida
- Division of Neurology, Saitama Children's Medical Center, Saitama, Japan
| | - Shin-Ichiro Hamano
- Division of Neurology, Saitama Children's Medical Center, Saitama, Japan
| | - Masaki Miura
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Pediatrics, Nagaoka Red Cross Hospital, Nagaoka, Japan
| | - Akihiko Ishiyama
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Osamu Kawano
- Department of Pediatrics, Hokkaido University Hospital, Sapporo, Japan
| | - Akane Kondo
- Clinical Genetics Center, Shikoku Medical Center for Children and Adults, National Hospital Organization, Kagawa, Japan
| | - Hiroshi Matsumoto
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Tohru Okanishi
- Department of Brain and Neurosciences, Division of Child Neurology, Faculty of Medicine, Tottori University, Yonago, Japan.,Department of Child Neurology, Comprehensive Epilepsy Center, Seirei Hamamatsu General Hospital, Hamamatsu, Japan
| | - Yukimi Oyoshi
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Eri Takeshita
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Toshifumi Suzuki
- Department of Obstetrics and Gynecology, Faculty of Medicine Juntendo University, Tokyo, Japan
| | - Yoshiyuki Ogawa
- Department of Hematology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Hiroshi Handa
- Department of Hematology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Yayoi Miyazono
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Atsushi Takata
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
15
|
Mei D, Cetica V, Marini C, Guerrini R. Dravet syndrome as part of the clinical and genetic spectrum of sodium channel epilepsies and encephalopathies. Epilepsia 2020; 60 Suppl 3:S2-S7. [PMID: 31904125 DOI: 10.1111/epi.16054] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 01/01/2023]
Abstract
Dravet syndrome is the most studied form of genetic epilepsy. It has now been clarified that the clinical spectrum of the syndrome does not have firmly established boundaries. The core phenotype is characterized by intractable, mainly clonic, seizures precipitated by increased body temperature with onset in the first year of life and subsequent appearance of multiple seizures types still precipitated by, but not confined to, hyperthermia. Cognitive impairment is invariably present when the full syndrome is manifested. This complex of symptoms is related to mutations in the SCN1A gene, which are often de novo and constitutional but can also be inherited from a parent with less severe clinical manifestations or be present as somatic mosaicism. Inheritance from less severely affected individuals, at times only having experienced a few febrile seizures, and differences in severity, even within the same family, with a subset of patients only showing fragments of the syndrome, testify to a remarkable phenotypic heterogeneity as far as severity, but less so clinical phenomenology, are concerned. This characteristic, together with underascertainment of SCN1A mutations due to human errors or technical limitations in uncovering alternative pathogenic molecular mechanisms, such as genomic rearrangements or poison exons, has contributed to making clinicians and geneticists suspicious that Dravet syndrome may be caused by more than one gene. This opinion has been further amplified by the description of other genetic disorders, such as PCDH19- or CHD2-related epilepsy, whose phenotypes have included fragments of the Dravet phenotypic spectrum, and by the suboptimal characterization of phenotypes associated with mutations in SCN1B, HCN1, KCN2A, GABRA1, GABRG2, and STXBP1. The SCN1A gene-Dravet syndrome association is in our opinion highly specific. However, because the syndrome spectrum is wide, fragments of it can at times also be manifested in other genetic epilepsy syndromes, thereby leading to overdiagnosis of Dravet syndrome beyond SCN1A. Dravet syndrome is in turn a severe SCN1A phenotype within a continuum of SCN1A-related clinical phenomenology.
Collapse
Affiliation(s)
- Davide Mei
- Pediatric Neurology, Neurogenetics, and Neurobiology Unit and Laboratories, Meyer Children's Hospital-University of Florence, Florence, Italy
| | - Valentina Cetica
- Pediatric Neurology, Neurogenetics, and Neurobiology Unit and Laboratories, Meyer Children's Hospital-University of Florence, Florence, Italy
| | - Carla Marini
- Pediatric Neurology, Neurogenetics, and Neurobiology Unit and Laboratories, Meyer Children's Hospital-University of Florence, Florence, Italy
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics, and Neurobiology Unit and Laboratories, Meyer Children's Hospital-University of Florence, Florence, Italy.,IRCCS Stella Maris Foundation, Pisa, Italy
| |
Collapse
|
16
|
Kuchenbuch M, Barcia G, Chemaly N, Carme E, Roubertie A, Gibaud M, Van Bogaert P, de Saint Martin A, Hirsch E, Dubois F, Sarret C, Nguyen The Tich S, Laroche C, des Portes V, Billette de Villemeur T, Barthez MA, Auvin S, Bahi-Buisson N, Desguerre I, Kaminska A, Benquet P, Nabbout R. KCNT1 epilepsy with migrating focal seizures shows a temporal sequence with poor outcome, high mortality and SUDEP. Brain 2019; 142:2996-3008. [DOI: 10.1093/brain/awz240] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 11/14/2022] Open
Abstract
Data on KCNT1 epilepsy of infancy with migrating focal seizures are heterogeneous and incomplete. Kuchenbuch et al. refine the syndrome phenotype, showing a three-step temporal sequence, poor prognosis with acquired microcephaly, high prevalence of extra-neurological manifestations and early mortality, particularly due to SUDEP. Refining the electro-clinical spectrum should facilitate early diagnosis.
Collapse
Affiliation(s)
- Mathieu Kuchenbuch
- University Rennes, CHU Rennes (Department of Clinical neurophysiology), Inserm, LTSI (Laboratoire de Traitement du Signal et de l’Image), UMR-1099, F-35000 Rennes, France
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades Hospital, Paris Descartes University, Paris, France
- Institut Imagine, INSERM UMR 1163, Translational research for neurological disorder, France
| | - Giulia Barcia
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades Hospital, Paris Descartes University, Paris, France
- Institut Imagine, INSERM UMR 1163, Translational research for neurological disorder, France
- Department of Genetics, Necker Enfants Malades Hospital, Imagine Institute, France
| | - Nicole Chemaly
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades Hospital, Paris Descartes University, Paris, France
- Institut Imagine, INSERM UMR 1163, Translational research for neurological disorder, France
| | - Emilie Carme
- Department of Pediatric Neurology, University of Montpellier, France
| | - Agathe Roubertie
- Department of Pediatric Neurology, University of Montpellier, France
| | - Marc Gibaud
- Department of Pediatric Neurology, Angers University Hospital, France
| | | | | | - Edouard Hirsch
- Department of Pediatric Neurology, Strasbourg University Hospital, France
| | - Fanny Dubois
- Department of Pediatric Neurology, CHU Grenoble Alpes, F-38000 Grenoble, France
| | | | | | - Cecile Laroche
- Department of Pediatric Neurology, Limoges University Hospital, France
| | - Vincent des Portes
- Department of Pediatric Neurology, CNRS UMR 5304, F- 69675 Bron, France
- Lyon-1 University, F-69008 Lyon, France
| | | | | | - Stéphane Auvin
- Université Paris Diderot, Sorbonne Paris Cité, INSERM UMR1141, Paris, France
- AP-HP, Hôpital Robert Debré, Service de Neurologie Pédiatrique, Paris, France
| | - Nadia Bahi-Buisson
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades Hospital, Paris Descartes University, Paris, France
| | - Isabelle Desguerre
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades Hospital, Paris Descartes University, Paris, France
| | - Anna Kaminska
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades Hospital, Paris Descartes University, Paris, France
- AP-HP, Necker-Enfants Malades Hospital, Department of Clinical Neurophysiology, Paris, France
| | - Pascal Benquet
- University Rennes, CHU Rennes (Department of Clinical neurophysiology), Inserm, LTSI (Laboratoire de Traitement du Signal et de l’Image), UMR-1099, F-35000 Rennes, France
| | - Rima Nabbout
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades Hospital, Paris Descartes University, Paris, France
- Institut Imagine, INSERM UMR 1163, Translational research for neurological disorder, France
| |
Collapse
|
17
|
Guevara-González J, Dimas-Rendón I, González de Guevara L, Guevara-Campos J, Cauli O. Febrile seizure and related syndromes. NEUROLOGY, PSYCHIATRY AND BRAIN RESEARCH 2018; 27:1-5. [DOI: 10.1016/j.npbr.2017.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
18
|
Optimizing the Diagnosis and Management of Dravet Syndrome: Recommendations From a North American Consensus Panel. Pediatr Neurol 2017; 68:18-34.e3. [PMID: 28284397 DOI: 10.1016/j.pediatrneurol.2017.01.025] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/24/2017] [Accepted: 01/28/2017] [Indexed: 01/26/2023]
Abstract
OBJECTIVES To establish standards for early, cost-effective, and accurate diagnosis; optimal therapies for seizures; and recommendations for evaluation and management of comorbidities for children and adults with Dravet syndrome, using a modified Delphi process. METHODS An expert panel was convened comprising epileptologists with nationally recognized expertise in Dravet syndrome and parents of children with Dravet syndrome, whose experience and understanding was enhanced by their active roles in Dravet syndrome associations. Panelists were asked to base their responses to questions both on their clinical expertise and results of a literature review that was forwarded to each panelist. Three rounds of online questionnaires were conducted to identify areas of consensus and strength of that consensus, as well as areas of contention. RESULTS The panel consisted of 13 physicians and five family members. Strong consensus was reached regarding typical clinical presentation of Dravet syndrome, range of electroencephalography and magnetic resonance imaging findings, need for genetic testing, critical information that should be conveyed to families at diagnosis, priorities for seizure control and typical degree of control, seizure triggers and recommendations for avoidance, first- and second-line therapies for seizures, requirement and indications for rescue therapy, specific recommendations for comorbidity screening, and need for family support. Consensus was not as strong regarding later therapies, including vagus nerve stimulation and callosotomy, and for specific therapies of associated comorbidities. Beyond the initial treatment with benzodiazepines and use of valproate, there was no consensus on the optimal in-hospital management of convulsive status epilepticus. CONCLUSIONS We were able to identify areas where there was strong consensus that we hope will (1) inform health care providers on optimal diagnosis and management of patients with Dravet syndrome, (2) support reimbursement from insurance companies for genetic testing and Dravet syndrome-specific therapies, and (3) improve quality of life for patients with Dravet syndrome and their families by avoidance of unnecessary testing and provision of an early accurate diagnosis allowing optimal selection of therapeutic strategies.
Collapse
|
19
|
A case of Dravet syndrome with cortical myoclonus indicated by jerk-locked back-averaging of electroencephalogram data. Brain Dev 2017; 39:75-79. [PMID: 27523882 DOI: 10.1016/j.braindev.2016.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/26/2016] [Accepted: 07/27/2016] [Indexed: 11/23/2022]
Abstract
We report a female patient with Dravet syndrome (DS) with erratic segmental myoclonus, the origin of which was first identified in the cerebral cortex by the detection of myoclonus-associated cortical discharges. The discharges were disclosed through jerk-locked back-averaging of electroencephalogram (EEG) data using the muscle activity of myoclonus as triggers. The detected spikes on the contralateral parieto-central region preceded myoclonic muscle activity in the forearms by 28-46ms. The patient was six months old at the time of examination, and was developing normally before seizure onset at two months of age. She suffered from recurrent afebrile or febrile generalized tonic-clonic seizures that often developed into status epilepticus. Interictal EEG and brain magnetic resonance imaging (MRI) showed no significant findings. The amplitudes of the somatosensory-evoked potentials were not extremely large. She has a chromosomal microdeletion involving SCN1A and adjacent genes.
Collapse
|
20
|
Gaily E, Lommi M, Lapatto R, Lehesjoki AE. Incidence and outcome of epilepsy syndromes with onset in the first year of life: A retrospective population-based study. Epilepsia 2016; 57:1594-1601. [DOI: 10.1111/epi.13514] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Eija Gaily
- Children's Hospital; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - Markus Lommi
- Children's Hospital; University of Helsinki and Helsinki University Hospital; Helsinki Finland
- Folkhälsan Institute of Genetics; Helsinki Finland
| | - Risto Lapatto
- Children's Hospital; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - Anna-Elina Lehesjoki
- Folkhälsan Institute of Genetics; Helsinki Finland
- Neuroscience Center; University of Helsinki; Helsinki Finland
- Research Programs Unit; Molecular Neurology; University of Helsinki; Helsinki Finland
| |
Collapse
|
21
|
Fry AE, Rees E, Thompson R, Mantripragada K, Blake P, Jones G, Morgan S, Jose S, Mugalaasi H, Archer H, McCann E, Clarke A, Taylor C, Davies S, Gibbon F, Te Water Naude J, Hartley L, Thomas G, White C, Natarajan J, Thomas RH, Drew C, Chung SK, Rees MI, Holmans P, Owen MJ, Kirov G, Pilz DT, Kerr MP. Pathogenic copy number variants and SCN1A mutations in patients with intellectual disability and childhood-onset epilepsy. BMC MEDICAL GENETICS 2016; 17:34. [PMID: 27113213 PMCID: PMC4845474 DOI: 10.1186/s12881-016-0294-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 04/14/2016] [Indexed: 11/10/2022]
Abstract
Background Copy number variants (CNVs) have been linked to neurodevelopmental disorders such as intellectual disability (ID), autism, epilepsy and psychiatric disease. There are few studies of CNVs in patients with both ID and epilepsy. Methods We evaluated the range of rare CNVs found in 80 Welsh patients with ID or developmental delay (DD), and childhood-onset epilepsy. We performed molecular cytogenetic testing by single nucleotide polymorphism array or microarray-based comparative genome hybridisation. Results 8.8 % (7/80) of the patients had at least one rare CNVs that was considered to be pathogenic or likely pathogenic. The CNVs involved known disease genes (EHMT1, MBD5 and SCN1A) and imbalances in genomic regions associated with neurodevelopmental disorders (16p11.2, 16p13.11 and 2q13). Prompted by the observation of two deletions disrupting SCN1A we undertook further testing of this gene in selected patients. This led to the identification of four pathogenic SCN1A mutations in our cohort. Conclusions We identified five rare de novo deletions and confirmed the clinical utility of array analysis in patients with ID/DD and childhood-onset epilepsy. This report adds to our clinical understanding of these rare genomic disorders and highlights SCN1A mutations as a cause of ID and epilepsy, which can easily be overlooked in adults. Electronic supplementary material The online version of this article (doi:10.1186/s12881-016-0294-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrew E Fry
- Institute of Medial Genetics, University Hospital of Wales, Cardiff, CF14 4XW, UK. .,Institute of Cancer and Genetics, Cardiff University, Cardiff, CF14 4XN, UK.
| | - Elliott Rees
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Rose Thompson
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Kiran Mantripragada
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Penny Blake
- Llwyneryr Unit, Learning Disability Services, Clasemont Road, Morriston, Swansea, SA6 6AH, UK
| | - Glyn Jones
- Learning Disabilities Directorate, Abertawe Bro Morgannwg University NHS Trust, Treseder Way, Caerau, Cardiff, CF5 5WF, UK
| | - Sian Morgan
- Institute of Medial Genetics, University Hospital of Wales, Cardiff, CF14 4XW, UK
| | - Sian Jose
- Institute of Medial Genetics, University Hospital of Wales, Cardiff, CF14 4XW, UK
| | - Hood Mugalaasi
- Institute of Medial Genetics, University Hospital of Wales, Cardiff, CF14 4XW, UK
| | - Hayley Archer
- Institute of Medial Genetics, University Hospital of Wales, Cardiff, CF14 4XW, UK
| | - Emma McCann
- Department of Clinical Genetics, Glan Clwyd Hospital, Betsi Cadwaladr University Health Board, Rhyl, Denbighshire, LL18 5UJ, UK
| | - Angus Clarke
- Institute of Medial Genetics, University Hospital of Wales, Cardiff, CF14 4XW, UK.,Institute of Cancer and Genetics, Cardiff University, Cardiff, CF14 4XN, UK
| | - Clare Taylor
- Institute of Medial Genetics, University Hospital of Wales, Cardiff, CF14 4XW, UK
| | - Sally Davies
- Institute of Medial Genetics, University Hospital of Wales, Cardiff, CF14 4XW, UK
| | - Frances Gibbon
- Department of Paediatric Neurology, University Hospital of Wales, Cardiff, CF14 4XW, UK
| | - Johann Te Water Naude
- Department of Paediatric Neurology, University Hospital of Wales, Cardiff, CF14 4XW, UK
| | - Louise Hartley
- Department of Paediatric Neurology, University Hospital of Wales, Cardiff, CF14 4XW, UK
| | - Gareth Thomas
- Department of Paediatric Neurology, Morriston Hospital, Abertawe Bro Morgannwg University Health Board, Swansea, SA6 6NL, UK
| | - Catharine White
- Department of Paediatric Neurology, Morriston Hospital, Abertawe Bro Morgannwg University Health Board, Swansea, SA6 6NL, UK
| | - Jaya Natarajan
- Department of Paediatrics, Royal Glamorgan Hospital, Cwm Taf University Health Board, Pontyclun, Mid Glamorgan, CF72 8XR, UK
| | - Rhys H Thomas
- Welsh Epilepsy Centre, Neurosciences Directorate, University Hospital of Wales, Cardiff, CF14 4XW, UK
| | - Cheney Drew
- Neurology and Molecular Neuroscience Research, Institute of Life Science, College of Medicine, Swansea University, Swansea, SA2 8PP, UK
| | - Seo-Kyung Chung
- Neurology and Molecular Neuroscience Research, Institute of Life Science, College of Medicine, Swansea University, Swansea, SA2 8PP, UK
| | - Mark I Rees
- Neurology and Molecular Neuroscience Research, Institute of Life Science, College of Medicine, Swansea University, Swansea, SA2 8PP, UK
| | - Peter Holmans
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Michael J Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - George Kirov
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Daniela T Pilz
- Institute of Medial Genetics, University Hospital of Wales, Cardiff, CF14 4XW, UK
| | - Michael P Kerr
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, CF24 4HQ, UK.,Learning Disabilities Directorate, Abertawe Bro Morgannwg University NHS Trust, Treseder Way, Caerau, Cardiff, CF5 5WF, UK
| |
Collapse
|
22
|
Febrile Seizures and Febrile Seizure Syndromes: An Updated Overview of Old and Current Knowledge. Neurol Res Int 2015; 2015:849341. [PMID: 26697219 PMCID: PMC4677235 DOI: 10.1155/2015/849341] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/26/2015] [Accepted: 10/28/2015] [Indexed: 01/04/2023] Open
Abstract
Febrile seizures are the most common paroxysmal episode during childhood, affecting up to one in 10 children. They are a major cause of emergency facility visits and a source of family distress and anxiety. Their etiology and pathophysiological pathways are being understood better over time; however, there is still more to learn. Genetic predisposition is thought to be a major contributor. Febrile seizures have been historically classified as benign; however, many emerging febrile seizure syndromes behave differently. The way in which human knowledge has evolved over the years in regard to febrile seizures has not been dealt with in depth in the current literature, up to our current knowledge. This review serves as a documentary of how scientists have explored febrile seizures, elaborating on the journey of knowledge as far as etiology, clinical features, approach, and treatment strategies are concerned. Although this review cannot cover all clinical aspects related to febrile seizures at the textbook level, we believe it can function as a quick summary of the past and current sources of knowledge for all varieties of febrile seizure types and syndromes.
Collapse
|
23
|
Rafiullah R, Aslamkhan M, Paramasivam N, Thiel C, Mustafa G, Wiemann S, Schlesner M, Wade RC, Rappold GA, Berkel S. Homozygous missense mutation in the LMAN2L gene segregates with intellectual disability in a large consanguineous Pakistani family. J Med Genet 2015; 53:138-44. [PMID: 26566883 DOI: 10.1136/jmedgenet-2015-103179] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 10/22/2015] [Indexed: 01/22/2023]
Abstract
BACKGROUND Intellectual disability (ID) is a neurodevelopmental disorder affecting 1%-3% of the population worldwide. It is characterised by high phenotypic and genetic heterogeneity and in most cases the underlying cause of the disorder is unknown. In our study we investigated a large consanguineous family from Baluchistan, Pakistan, comprising seven affected individuals with a severe form of autosomal recessive ID (ARID) and epilepsy, to elucidate a putative genetic cause. METHODS AND RESULTS Whole exome sequencing (WES) of a trio, including a child with ID and epilepsy and its healthy parents that were part of this large family, revealed a homozygous missense variant p.R53Q in the lectin mannose-binding 2-like (LMAN2L) gene. This homozygous variant was co-segregating in the family with the phenotype of severe ID and infantile epilepsy; unaffected family members were heterozygous variant carriers. The variant was predicted to be pathogenic by five different in silico programmes and further three-dimensional structure modelling of the protein suggests that variant p.R53Q may impair protein-protein interaction. LMAN2L (OMIM: 609552) encodes for the lectin, mannose-binding 2-like protein which is a cargo receptor in the endoplasmic reticulum important for glycoprotein transport. Genome-wide association studies have identified an association of LMAN2L to different neuropsychiatric disorders. CONCLUSION This is the first report linking LMAN2L to a phenotype of severe ARID and seizures, indicating that the deleterious homozygous p.R53Q variant very likely causes the disorder.
Collapse
Affiliation(s)
- Rafiullah Rafiullah
- Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany Department of Human Genetics and Molecular Biology, University of Health Sciences Lahore, Lahore, Pakistan
| | - Muhammad Aslamkhan
- Department of Human Genetics and Molecular Biology, University of Health Sciences Lahore, Lahore, Pakistan
| | - Nagarajan Paramasivam
- Division of Theoretical Bioinformatics (B080), German Cancer Research Center (DKFZ), Heidelberg, Germany Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Christian Thiel
- Department I, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Ghulam Mustafa
- Molecular and Cellular Modeling (MCM) Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany Center for Molecular Biology, DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
| | - Stefan Wiemann
- Genomics and Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Rebecca C Wade
- Molecular and Cellular Modeling (MCM) Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany Center for Molecular Biology, DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
| | - Gudrun A Rappold
- Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Simone Berkel
- Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|