1
|
Uczay M, Pflüger P, Picada JN, de Oliveira JDM, da SilvaTorres IL, Medeiros HR, Vendruscolo MH, von Poser G, Pereira P. Geniposide and asperuloside alter the COX-2 and GluN2B receptor expression after pilocarpine-induced seizures in mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 396:951-962. [PMID: 36536207 DOI: 10.1007/s00210-022-02367-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022]
Abstract
Asperuloside (ASP) and geniposide (GP) are iridoids that have shown various biological properties, such as reduction of inflammation, oxidative stress, and neuroprotection. The aim of this study was to investigate the mechanism of action of ASP and GP through the experimental model of pilocarpine-induced seizures. Mice were treated daily with saline, valproic acid (VPA), GP (5, 25, or 50 mg/kg), or ASP (20 or 40 mg/kg) for 8 days. Pilocarpine (PILO) treatment was administered after the last day of treatment, and the epileptic behavior was recorded for 1 h and analyzed by an adapted scale. Afterward, the hippocampus and blood samples were collected for western blot analyses, ELISA and comet assay, and bone marrow to the micronucleus test. We evaluated the expression of the inflammatory marker cyclooxygenase-2 (COX-2), GluN2B, a subunit of the NMDA receptor, pGluR1, an AMPA receptor, and the enzyme GAD-1 by western blot and the cytokine TNF-α by ELISA. The treatments with GP and ASP were capable to decrease the latency to the first seizure, although they did not change the latency to status epilepticus (SE). ASP demonstrated a genotoxic potential analyzed by comet assay; however, the micronuclei frequency was not increased in the bone marrow. The GP and ASP treatments were capable to reduce COX-2 and GluN2B receptor expression after PILO exposure. This study suggests that GP and ASP have a protective effect on PILO-induced seizures, decreasing GluN2B receptor and COX-2 expression.
Collapse
Affiliation(s)
- Mariana Uczay
- Laboratory of Neuropharmacology and Preclinical Toxicology, Institute of Basic Health Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, 90050-170, Brazil
| | - Pricila Pflüger
- Laboratory of Neuropharmacology and Preclinical Toxicology, Institute of Basic Health Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, 90050-170, Brazil
| | | | | | - Iraci Lucena da SilvaTorres
- Laboratory of Pain Pharmacology and Neuromodulation, Federal University of Rio Grande Do Sul, Porto Alegre, 90050-170, Brazil
| | - Helouise Richardt Medeiros
- Laboratory of Pain Pharmacology and Neuromodulation, Federal University of Rio Grande Do Sul, Porto Alegre, 90050-170, Brazil
| | - Maria Helena Vendruscolo
- Laboratory of Pharmacognosy, College of Pharmacy, Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, 90050-170, Brazil
| | - Gilsane von Poser
- Laboratory of Pharmacognosy, College of Pharmacy, Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, 90050-170, Brazil
| | - Patrícia Pereira
- Laboratory of Neuropharmacology and Preclinical Toxicology, Institute of Basic Health Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, 90050-170, Brazil.
| |
Collapse
|
2
|
Kim Y, Lee S, Park K, Yoon H. Cooperative Interaction between Acid and Copper Resistance in Escherichia coli. J Microbiol Biotechnol 2022; 32:602-611. [PMID: 35283428 PMCID: PMC9628877 DOI: 10.4014/jmb.2201.01034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/22/2022] [Accepted: 03/04/2022] [Indexed: 12/15/2022]
Abstract
The persistence of pathogenic Escherichia coli under acidic conditions poses a serious risk to food safety, especially in acidic foods such as kimchi. To identify the bacterial factors required for acid resistance, transcriptomic analysis was conducted on an acid-resistant enterotoxigenic E. coli strain and the genes with significant changes in their expression under acidic pH were selected as putative resistance factors against acid stress. These genes included those associated with a glutamatedependent acid resistance (GDAR) system and copper resistance. E. coli strains lacking GadA, GadB, or YbaST, the components of the GDAR system, exhibited significantly attenuated growth and survival under acidic stress conditions. Accordantly, the inhibition of the GDAR system by 3-mercaptopropionic acid and aminooxyacetic acid abolished bacterial adaptation and survival under acidic conditions, indicating the indispensable role of a GDAR system in acid resistance. Intriguingly, the lack of cueR encoding a transcriptional regulator for copper resistance genes markedly impaired bacterial resistance to acid stress as well as copper. Conversely, the absence of YbaST severely compromised bacterial resistance against copper, suggesting an interplay between acid and copper resistance. These results suggest that a GDAR system can be a promising target for developing control measures to prevent E. coli resistance to acid and copper treatments.
Collapse
Affiliation(s)
- Yeeun Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Seohyeon Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Kyungah Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Hyunjin Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea,Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon 16499, Republic of Korea,Corresponding author Phone: +82-31-219-2450 Fax: +82-31-219-1610 E-mail:
| |
Collapse
|
3
|
Acetylcholine receptor agonist effect on seizure activity and GABAergic mechanisms involved in prolonged febrile seizure development in an animal model. Brain Res Bull 2019; 149:203-207. [DOI: 10.1016/j.brainresbull.2019.04.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 04/17/2019] [Accepted: 04/24/2019] [Indexed: 12/21/2022]
|
4
|
Xiong S, Song Y, Liu J, Du Y, Ding Y, Wei H, Bryan K, Ma F, Mao L. Neuroprotective effects of MK-801 on auditory cortex in salicylate-induced tinnitus: Involvement of neural activity, glutamate and ascorbate. Hear Res 2019; 375:44-52. [PMID: 30795964 DOI: 10.1016/j.heares.2019.01.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 01/17/2019] [Accepted: 01/30/2019] [Indexed: 12/14/2022]
Abstract
Tinnitus may cause anxiety, depression, insomnia, which impair the quality of life of millions worldwide. However, the mechanism of tinnitus remains to be understood, it has been previously hypothesized that the activation of N-methyl-D-aspartate (NMDA) receptor is involved in the tinnitus processes and blockade of the NMDA receptor is regarded as a therapeutic strategy for tinnitus treatment even if the rescue treatment is still proved invalid in some cases. To demonstrate the therapeutic effect of the NMDA receptor blocker on tinnitus, we examined here the spontaneous firing rate (SFR) and the neurochemical dynamics in the auditory cortex (AC) of rats after sodium salicylate (SS) injection, which is a widely used model for tinnitus research. We also recorded their responses to MK-801 treatment. Electrophysiological studies showed that MK-801 significantly suppresses SFR in AC of rats with SS-induced tinnitus. In addition, by using a technique that combining in vivo microdialysis with an online electrochemical system (OECS) and a high-performance liquid chromatography (HPLC), we found that the levels of both glutamate and ascorbate in AC dramatically increased after SS injection and that MK-801 administration attenuated those response. Further studies found that MK-801 given at a time point of 30 min pre- or post-injection of SS were more effective than that given at a time point of 60 min post-SS injection, indicating that the time point of MK-801 intervention has a critical impact on the therapeutic effect. These findings suggest that MK-801 plays a neuroprotective role against hyperactivity during tinnitus induced by SS and that the therapeutic effect depends on the time point of MK-801 intervention, which would advance the studies on understanding of the therapeutic potential of NMDA receptor antagonist in tinnitus therapy.
Collapse
Affiliation(s)
- Shan Xiong
- Department of Otolaryngology Head and Neck Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Yu Song
- Department of Otolaryngology Head and Neck Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Junxiu Liu
- Department of Otolaryngology Head and Neck Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Yali Du
- Department of Otolaryngology Head and Neck Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Yujing Ding
- Department of Otolaryngology Head and Neck Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Huan Wei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, 100190, China
| | - Kevin Bryan
- Junipero Serra High School, San Mateo, CA, USA
| | - Furong Ma
- Department of Otolaryngology Head and Neck Surgery, Peking University Third Hospital, Beijing, 100191, China.
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
5
|
Liimatainen S, Honnorat J, Pittock SJ, McKeon A, Manto M, Radtke JR, Hampe CS. GAD65 autoantibody characteristics in patients with co-occurring type 1 diabetes and epilepsy may help identify underlying epilepsy etiologies. Orphanet J Rare Dis 2018; 13:55. [PMID: 29636076 PMCID: PMC5892043 DOI: 10.1186/s13023-018-0787-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/16/2018] [Indexed: 02/07/2023] Open
Abstract
Background Autoantibodies against the smaller isoform of glutamate decarboxylase (GAD65Ab) reflect autoimmune etiologies in Type 1 diabetes (T1D) and several neurological disorders, including Stiff Person Syndrome (SPS). GAD65Ab are also reported in cases of epilepsy, indicating an autoimmune component. GAD65Ab in patients with co-occurring T1D, epilepsy or SPS may be part of either autoimmune pathogenesis. To dissect the etiologies associated with GAD65Ab, we analyzed GAD65Ab titer, epitope specificity and enzyme inhibition in GAD65Ab-positive patients diagnosed with epilepsy (n = 28), patients with epilepsy and T1D (n = 10), patients with SPS (n = 20), and patients with T1D (n = 42). Results GAD65Ab epitope pattern in epilepsy differed from T1D and SPS patients. Four of 10 patients with co-occurring T1D and epilepsy showed GAD65Ab profiles similar to T1D patients, while lacking GAD65Ab characteristics found in GAD65Ab-positive epilepsy patients. One of these patients responded well to anti-epileptic drugs (AEDs), while another patient did not require medication for seizure control. The third patient was refractory due to a diagnosis of meningioma. The response of the remaining patient to AEDs was unknown. GAD65Ab in the remaining six patients with T1D and epilepsy showed profiles similar to those in epilepsy patients. Conclusions Different autoimmune responses associated with T1D, epilepsy and SPS are reflected by disease-specific GAD65Ab patterns. Moreover, the epileptic etiology in patients diagnosed with both T1D and epilepsy may present two different etiologies regarding their epileptic condition. In one group T1D co-occurs with non-autoimmune epilepsy. In the other group GAD65Ab are part of an autoimmune epileptic condition.
Collapse
Affiliation(s)
- Suvi Liimatainen
- Department of Neurology and Rehabilitation, Tampere University Hospital, Tampere, Finland.,Division 7, Tampere University Hospital, Tampere, Finland
| | - Jerome Honnorat
- University of Lyon - University Claude Bernard Lyon, Lyon, France
| | - Sean J Pittock
- Department of Neurology, College of Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Laboratory Medicine & Pathology College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Andrew McKeon
- Department of Neurology, College of Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Laboratory Medicine & Pathology College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Mario Manto
- Unité d'Etude du Mouvement, Université Libre De Bruxelles, Brussels, Belgium
| | - Jared R Radtke
- Department of Medicine, School of Medicine, University of Washington, 850 Republican, Seattle, WA, 98109, USA
| | | | - Christiane S Hampe
- Department of Medicine, School of Medicine, University of Washington, 850 Republican, Seattle, WA, 98109, USA.
| |
Collapse
|
6
|
Upregulated P2X3 Receptor Expression in Patients with Intractable Temporal Lobe Epilepsy and in a Rat Model of Epilepsy. Neurochem Res 2016; 41:1263-73. [DOI: 10.1007/s11064-015-1820-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 12/24/2015] [Accepted: 12/29/2015] [Indexed: 12/11/2022]
|
7
|
Abstract
Epilepsy is a common type of neurological disorder with complex etiology. The mechanisms are still not clear. MicroRNAs are endogenous noncoding RNAs with many physiological activities. Multiple microRNAs were abnormally expressed in status epilepticus, including miR-210. In this study, we applied lithium chloride and pilocarpine to induce epileptic activity and aimed to disclose the potential mechanisms. Our data showed that miR-210 was significantly upregulated in hippocampus one day after modeling (P<0.05 vs control) and the high expression of miR-210 lasted for at least 30 days. By contrast, γ-aminobutyric acid (GABA) level significantly decreased concurrently after modeling (P<0.05 vs control). To question whether miR-210 could be a potential therapeutic target for epilepsy, miR-210 inhibitor was administrated through intrahippocampal injection after epilepsy modeling. Our data showed that morphological changes of hippocampal neurons and apoptosis triggered by epilepsy were mitigated by miR-210 inhibition. More importantly, the expressions of GABA-related proteins, including GABAA receptor α1, glutamate decarboxylase, and GABA transporter 1, were significantly elevated after epilepsy modeling in both mRNA and protein levels 3 days postmodeling (P<0.05 vs control), which were mitigated by miR-210 inhibitor treatment (P<0.05 vs model). In addition, epilepsy-induced upregulation of GABA transaminase was alleviated by miR-210 inhibitor. Taken together, these data implicated potential roles of miR-210 in lithium chloride-pilocarpine-induced epilepsy model and miR-210 could serve as a potential therapeutic target in status epilepticus.
Collapse
Affiliation(s)
- Licheng Chen
- Neurological Department of Internal Medicine, Linyi People's Hospital of Shandong Province, Linyi, People's Republic of China
| | - Hao Zheng
- Neurological Department of Internal Medicine, Linyi People's Hospital of Shandong Province, Linyi, People's Republic of China
| | - Shimeng Zhang
- Neurological Department of Internal Medicine, Linyi People's Hospital of Shandong Province, Linyi, People's Republic of China
| |
Collapse
|