1
|
Asfaw ZK, Young T, Brown C, Germano IM. Charting the success of neuronavigation in brain tumor surgery: from inception to adoption and evolution. J Neurooncol 2024; 170:1-10. [PMID: 39048723 DOI: 10.1007/s11060-024-04778-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024]
Abstract
PURPOSE Neuronavigation, explored as an intra-operative adjunct for brain tumor surgery three decades ago, has become globally utilized with a promising upward trajectory. This study aims to chart its success from idea to adoption and evolution within the US and globally. METHODS A three-pronged methodology included a systematic literature search, impact analysis using NIH relative citation ratio (RCR) and Altmetric scores, and assessment of patent holdings. Data was dichotomized for US and international contexts. RESULTS The first neuronavigation publication stemmed from Finland in 1993, marking its inception. Over three decades, the cumulative number of 323 studies, along with the significantly increasing publication trend (r = 0.74, p < 0.05) and distribution across 34 countries, underscored its progressive and global adoption. Neuronavigation, mostly optical systems (58%), was utilized in over 19,000 cases, predominantly for brain tumor surgery (84%). Literature impact showed a robust cumulative median RCR score surpassing that for NIH-funded studies (1.37 vs. 1.0), with US studies having a significantly higher median RCR than international (1.71 vs. 1.21, p < 0.05). Technological evolution was characterized by adjuncts, including micro/exo/endoscope (21%), MRI (17%), ultrasound (10%), and CT (7%). Patent analysis demonstrated academic and industrial representation with an interdisciplinary convergence of medical and computational sciences. CONCLUSION Since its inception thirty years ago, neuronavigation has been adopted worldwide, and it has evolved with adjunct technology integration to enhance its meaningful use. The current neuronavigation innovation pipeline is progressing, with academic and industry partnering to advance its further application in treating brain tumor patients.
Collapse
Affiliation(s)
- Zerubabbel K Asfaw
- Department of Neurosurgery, Icahn School of Medicine, 1 Gustave Levy Place, New York, NY, 10029, USA
| | - Tirone Young
- Department of Neurosurgery, Icahn School of Medicine, 1 Gustave Levy Place, New York, NY, 10029, USA
| | - Cole Brown
- Department of Neurosurgery, Icahn School of Medicine, 1 Gustave Levy Place, New York, NY, 10029, USA
| | - Isabelle M Germano
- Department of Neurosurgery, Icahn School of Medicine, 1 Gustave Levy Place, New York, NY, 10029, USA.
| |
Collapse
|
2
|
Grote A, Neumann F, Menzler K, Carl B, Nimsky C, Bopp MHA. Augmented Reality in Extratemporal Lobe Epilepsy Surgery. J Clin Med 2024; 13:5692. [PMID: 39407752 PMCID: PMC11477171 DOI: 10.3390/jcm13195692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Epilepsy surgery for extratemporal lobe epilepsy (ETLE) is challenging, particularly when MRI findings are non-lesional and seizure patterns are complex. Invasive diagnostic techniques are crucial for accurately identifying the epileptogenic zone and its relationship with surrounding functional tissue. Microscope-based augmented reality (AR) support, combined with navigation, may enhance intraoperative orientation, particularly in cases involving subtle or indistinct lesions, thereby improving patient outcomes and safety (e.g., seizure freedom and preservation of neuronal integrity). Therefore, this study was conducted to prove the clinical advantages of microscope-based AR support in ETLE surgery. Methods: We retrospectively analyzed data from ten patients with pharmacoresistant ETLE who underwent invasive diagnostics with depth and/or subdural grid electrodes, followed by resective surgery. AR support was provided via the head-up displays of the operative microscope, with navigation based on automatic intraoperative computed tomography (iCT)-based registration. The surgical plan included the suspected epileptogenic lesion, electrode positions, and relevant surrounding functional structures, all of which were visualized intraoperatively. Results: Six patients reported complete seizure freedom following surgery (ILAE 1), one patient was seizure-free at the 2-year follow-up, and one patient experienced only auras (ILAE 2). Two patients developed transient neurological deficits that resolved shortly after surgery. Conclusions: Microscope-based AR support enhanced intraoperative orientation in all cases, contributing to improved patient outcomes and safety. It was highly valued by experienced surgeons and as a training tool for less experienced practitioners.
Collapse
Affiliation(s)
- Alexander Grote
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (F.N.); (B.C.); (C.N.)
| | - Franziska Neumann
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (F.N.); (B.C.); (C.N.)
| | - Katja Menzler
- Department of Neurology, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany;
| | - Barbara Carl
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (F.N.); (B.C.); (C.N.)
- Department of Neurosurgery, Helios Dr. Horst Schmidt Kliniken, Ludwig-Erhard-Straße 100, 65199 Wiesbaden, Germany
| | - Christopher Nimsky
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (F.N.); (B.C.); (C.N.)
- Center for Mind, Brain and Behavior (CMBB), 35043 Marburg, Germany
| | - Miriam H. A. Bopp
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (F.N.); (B.C.); (C.N.)
- Center for Mind, Brain and Behavior (CMBB), 35043 Marburg, Germany
| |
Collapse
|
3
|
Stefan H, Bösebeck F, Rössler K. Brain tumor-associated epilepsies in adulthood: Current state of diagnostic and individual treatment options. Seizure 2024:S1059-1311(24)00161-4. [PMID: 38910076 DOI: 10.1016/j.seizure.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/14/2024] [Accepted: 06/03/2024] [Indexed: 06/25/2024] Open
Abstract
Brain tumors are one of the most frequent causes of structural epilepsy and set a major burden on treatment costs and the social integrity of patients. Although promising oncological treatment strategies are already available, epileptological treatment is often intractable and requires lifelong epileptological care. Therefore, treatment strategies must be adapted to age-related needs, and specific aspects of late-onset epilepsy (LOE) must be considered. The practical implementation of individual decisions from tumor boards and the current state of the art in scientific knowledge about pathological mechanisms, modern diagnostic procedures and biomarkers, and patient-individualized treatment options into practical epileptological disease management is a prerequisite. This narrative review focuses on the current work progress regarding pathogenesis, diagnosis, and therapy. Exemplarily, interdisciplinary approaches for optimized individualized therapy will be discussed, emphasizing the combination of neurological-epileptological and oncological perspectives.
Collapse
Affiliation(s)
- Hermann Stefan
- Department of Neurology, Biomagnetism, University Hospital Erlangen, Germany; Private Practice, 50, Allee am Röthelheimpark, Erlangen, Germany.
| | - Frank Bösebeck
- AGAPLESION Diakonieklinikum Rotenburg, Neurological Clinic - Epilepsy Center, Rotenburg, Germany
| | - Karl Rössler
- Medizinische Universität Wien, Klinik für Neurochirurgie, Wien, Austria
| |
Collapse
|
4
|
Xu Y, Chen Y, Liu H, Zhang H, Yin Z, Liu D, Zhu G, Diao Y, Wu D, Xie H, Hu W, Zhang X, Shao X, Zhang K, Zhang J, Yang A. The clinical application of neuro-robot in the resection of epileptic foci: a novel method assisting epilepsy surgery. J Robot Surg 2023; 17:2259-2269. [PMID: 37308790 DOI: 10.1007/s11701-023-01615-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/13/2023] [Indexed: 06/14/2023]
Abstract
During surgery for foci-related epilepsy, neurosurgeons face significant difficulties in identifying and resecting MRI-negative or deep-seated epileptic foci. Here, we present a neuro-robotic navigation system that is specifically designed for resection of MRI negative epileptic foci. We recruited 52 epileptic patients, and randomly assigned them to treatment group with either neuro-robotic navigation or conventional neuronavigation system. For each patient, in the neuro-robotic navigation group, we integrated multimodality imaging including MRI and PET-CT into the robotic workstation and marked the boundary of foci from the fused image. During surgery, this boundary was delineated by the robotic laser device with high accuracy, guiding resection for the surgeon. For deeply seated foci, we exploited the neuro-robotic navigation system to localize the deepest point with biopsy needle insertion and methylene dye application to locate the boundary of the foci. Our results show that, compared with the conventional neuronavigation, the neuro-robotic navigation system performs equally well in MRI positive epilepsy patients (ENGEL I ratio: 71.4% vs 100%, p = 0.255) systems and show better performance in patients with MRI-negative focal cortical dysplasia (ENGEL I ratio: 88.2% vs 50%, p = 0.0439). At present, there are no documented neurosurgery robots with similar function and application in the field of epilepsy. Our research highlights the added value of using neuro-robotic navigation systems in resection surgery for epilepsy, particularly in cases that involve MRI-negative or deep-seated epileptic foci.
Collapse
Affiliation(s)
- Yichen Xu
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yingchuan Chen
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Huanguang Liu
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Hua Zhang
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Zixiao Yin
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Defeng Liu
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Guanyu Zhu
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yu Diao
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Delong Wu
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Hutao Xie
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Wenhan Hu
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xin Zhang
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Xiaoqiu Shao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Kai Zhang
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Jianguo Zhang
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China.
| | - Anchao Yang
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China.
| |
Collapse
|
5
|
Maslarova A, Zhao Y, Rösch J, Dörfler A, Coras R, Blümcke I, Lang J, Schmidt M, Hamer HM, Reindl C, Welte TM, Rampp S, Rössler K, Buchfelder M, Brandner S. Surgical planning, histopathology findings and postoperative outcome in MR-negative extra-temporal epilepsy using intracranial EEG, functional imaging, magnetoencephalography, neuronavigation and intraoperative MRI. Clin Neurol Neurosurg 2023; 226:107603. [PMID: 36706680 DOI: 10.1016/j.clineuro.2023.107603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/16/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
OBJECTIVE MRI-negative drug-resistant epilepsy presents a challenge when it comes to surgical planning, and surgical outcome is worse than in cases with an identified lesion. Although increasing implementation of more powerful MRI scanners and artificial intelligence has led to the detection of previously unrecognizable lesions, in some cases even postoperative pathological evaluation of electrographically epileptogenic zones shows no structural alterations. While in temporal lobe epilepsy a standardized resection approach can usually be performed, the surgical management of extra-temporal lesions is always individual. Here we present a strategy for treating patients with extra-temporal MRI-negative epilepsy focus and report our histological findings and patient outcome. METHODS Patients undergoing epilepsy surgery in the Department of Neurosurgery at the University Hospital Erlangen between 2012 and 2020 were included in the study. Inclusion criteria were: (1) failure to identify a structural lesion on preoperative high-resolution 3 Tesla MRI with a standardized epilepsy protocol and (2) preoperative intracranial EEG (iEEG) diagnostics. RESULTS We identified 8 patients corresponding to the inclusion criteria. Second look MRI analysis by an experienced neuroradiologist including the most recent analysis algorithm utilized in our clinic revealed a possible lesion in two patients. One of the patients with a clear focal cortical dysplasia (FCD) finding on a second look was excluded from further analysis. Of the other 7 patients, in one patient iEEG was performed with subdural electrodes, whereas the other 6 were evaluated with depth electrodes. MEG was performed preoperatively in all but one patient. An MEG focus was implemented in resection planning in 3 patients. FDG PET was performed in all, but only implemented in one patient. Histopathological evaluation revealed one non-lesional case, 4 cases of FCD and 2 cases with mild developmental malformation. All patients were free from permanent neurological deficits and presented with Engel 1A or 1B outcome on the last follow-up. CONCLUSION We demonstrate that extra-temporal MRI-negative epilepsy can be treated successfully provided an extensive preoperative planning is performed. The most important diagnostic was stereo-EEG, whereas additional data from MEG was helpful and FDG PET was rarely useful in our cohort.
Collapse
Affiliation(s)
- Anna Maslarova
- Department of Neurosurgery, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Yining Zhao
- Department of Neurosurgery, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Julie Rösch
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Arnd Dörfler
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Roland Coras
- Department of Neuropathology, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ingmar Blümcke
- Department of Neuropathology, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Johannes Lang
- Department of Neurology, Epilepsy Center Erlangen, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Manuel Schmidt
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Hajo M Hamer
- Department of Neurology, Epilepsy Center Erlangen, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Caroline Reindl
- Department of Neurology, Epilepsy Center Erlangen, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tamara M Welte
- Department of Neurology, Epilepsy Center Erlangen, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Stefan Rampp
- Department of Neurosurgery, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany; Department of Neurosurgery, University Hospital Halle (Saale), Halle, Germany
| | - Karl Rössler
- Neurosurgical Clinic, Vienna Medical University, Vienna, Austria
| | - Michael Buchfelder
- Department of Neurosurgery, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sebastian Brandner
- Department of Neurosurgery, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
6
|
Vogel S, Kaltenhäuser M, Kim C, Müller-Voggel N, Rössler K, Dörfler A, Schwab S, Hamer H, Buchfelder M, Rampp S. MEG Node Degree Differences in Patients with Focal Epilepsy vs. Controls-Influence of Experimental Conditions. Brain Sci 2021; 11:1590. [PMID: 34942895 PMCID: PMC8699109 DOI: 10.3390/brainsci11121590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 11/16/2022] Open
Abstract
Drug-resistant epilepsy can be most limiting for patients, and surgery represents a viable therapy option. With the growing research on the human connectome and the evidence of epilepsy being a network disorder, connectivity analysis may be able to contribute to our understanding of epilepsy and may be potentially developed into clinical applications. In this magnetoencephalographic study, we determined the whole-brain node degree of connectivity levels in patients and controls. Resting-state activity was measured at five frequency bands in 15 healthy controls and 15 patients with focal epilepsy of different etiologies. The whole-brain all-to-all imaginary part of coherence in source space was then calculated. Node degree was determined and parcellated and was used for further statistical evaluation. In comparison to controls, we found a significantly higher overall node degree in patients with lesional and non-lesional epilepsy. Furthermore, we examined the conditions of high/reduced vigilance and open/closed eyes in controls, to analyze whether patient node degree levels can be achieved. We evaluated intraclass-correlation statistics (ICC) to evaluate the reproducibility. Connectivity and specifically node degree analysis could present new tools for one of the most common neurological diseases, with potential applications in epilepsy diagnostics.
Collapse
Affiliation(s)
- Stephan Vogel
- Department of Neurosurgery, University Hospital Erlangen, 91054 Erlangen, Germany; (M.K.); (C.K.); (N.M.-V.); (M.B.); (S.R.)
- Friedrich Alexander University Erlangen Nürnberg (FAU), 91054 Erlangen, Germany
| | - Martin Kaltenhäuser
- Department of Neurosurgery, University Hospital Erlangen, 91054 Erlangen, Germany; (M.K.); (C.K.); (N.M.-V.); (M.B.); (S.R.)
| | - Cora Kim
- Department of Neurosurgery, University Hospital Erlangen, 91054 Erlangen, Germany; (M.K.); (C.K.); (N.M.-V.); (M.B.); (S.R.)
| | - Nadia Müller-Voggel
- Department of Neurosurgery, University Hospital Erlangen, 91054 Erlangen, Germany; (M.K.); (C.K.); (N.M.-V.); (M.B.); (S.R.)
| | - Karl Rössler
- Department of Neurosurgery, Medical University Vienna, 1090 Vienna, Austria;
| | - Arnd Dörfler
- Department of Neuroradiology, University Hospital Erlangen, 91054 Erlangen, Germany;
| | - Stefan Schwab
- Department of Neurology, University Hospital Erlangen, 91054 Erlangen, Germany; (S.S.); (H.H.)
| | - Hajo Hamer
- Department of Neurology, University Hospital Erlangen, 91054 Erlangen, Germany; (S.S.); (H.H.)
| | - Michael Buchfelder
- Department of Neurosurgery, University Hospital Erlangen, 91054 Erlangen, Germany; (M.K.); (C.K.); (N.M.-V.); (M.B.); (S.R.)
| | - Stefan Rampp
- Department of Neurosurgery, University Hospital Erlangen, 91054 Erlangen, Germany; (M.K.); (C.K.); (N.M.-V.); (M.B.); (S.R.)
- Department of Neurosurgery, University Hospital Halle (Saale), 06120 Halle (Saale), Germany
| |
Collapse
|
7
|
Laohathai C, Ebersole JS, Mosher JC, Bagić AI, Sumida A, Von Allmen G, Funke ME. Practical Fundamentals of Clinical MEG Interpretation in Epilepsy. Front Neurol 2021; 12:722986. [PMID: 34721261 PMCID: PMC8551575 DOI: 10.3389/fneur.2021.722986] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/06/2021] [Indexed: 11/29/2022] Open
Abstract
Magnetoencephalography (MEG) is a neurophysiologic test that offers a functional localization of epileptic sources in patients considered for epilepsy surgery. The understanding of clinical MEG concepts, and the interpretation of these clinical studies, are very involving processes that demand both clinical and procedural expertise. One of the major obstacles in acquiring necessary proficiency is the scarcity of fundamental clinical literature. To fill this knowledge gap, this review aims to explain the basic practical concepts of clinical MEG relevant to epilepsy with an emphasis on single equivalent dipole (sECD), which is one the most clinically validated and ubiquitously used source localization method, and illustrate and explain the regional topology and source dynamics relevant for clinical interpretation of MEG-EEG.
Collapse
Affiliation(s)
- Christopher Laohathai
- Division of Child Neurology, Department of Pediatrics, McGovern Medical School at UTHealth, Houston, TX, United States
- Department of Neurology, Saint Louis University, Saint Louis, MO, United States
| | - John S. Ebersole
- Northeast Regional Epilepsy Group, Atlantic Health Neuroscience Institute, Summit, NJ, United States
| | - John C. Mosher
- Department of Neurology, McGovern Medical School at UTHealth, Houston, TX, United States
| | - Anto I. Bagić
- University of Pittsburgh Comprehensive Epilepsy Center (UPCEC), Department of Neurology, University of Pittsburgh Medical Center, Pittsburg, PA, United States
| | - Ai Sumida
- Department of Neurology, McGovern Medical School at UTHealth, Houston, TX, United States
| | - Gretchen Von Allmen
- Division of Child Neurology, Department of Pediatrics, McGovern Medical School at UTHealth, Houston, TX, United States
| | - Michael E. Funke
- Division of Child Neurology, Department of Pediatrics, McGovern Medical School at UTHealth, Houston, TX, United States
| |
Collapse
|
8
|
Shawarba J, Kaspar B, Rampp S, Winter F, Coras R, Blumcke I, Hamer H, Buchfelder M, Roessler K. Advantages of magnetoencephalography, neuronavigation and intraoperative MRI in epilepsy surgery re-operations. Neurol Res 2021; 43:434-439. [PMID: 33402062 DOI: 10.1080/01616412.2020.1866384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Objective: Management of patients after failed epilepsy surgery is still challenging. Advanced diagnostic and intraoperative tools including magneto-encephalography (MEG) as well as neuronavigation and intraoperative magnetic resonance imaging (iopMRI) may contribute to a better postoperative seizure outcome in this patient group.Methods: We retrospectively analyzed consecutive patients after reoperation of failed epilepsy surgery for medically refractory epilepsy at the University of Erlangen between 1988 and 2017. Inclusion criteria for patients were available MEG, neuronavigation and iopMRI data. The Engel scale was used to categorize seizure outcome.Results: We report on 27 consecutive patients (13 female/14 male mean age at first surgery 29.4 years) who had operative revision of the first resection after failed epilepsy surgery. An improved seizure outcome postoperatively was observed in 78% of patients (p < 0.001) with 55% seizure free (Engel I) patients after a mean follow-up time of 4.9 years. In detail, 80% of lesional cases were seizure free compared to 59% of MRI negative patients. Localizing MEG spike activity in the vicinity of the first resection cavity was present in 12 of 27 patients (44%) corresponding to 83% (10/12) of MEG localizing spike patients having advanced seizure outcome after operative revision.Conclusion: Re-operation after failed surgery in refractory epilepsy may lead to a better seizure outcome in the majority of patients. Preoperative MEG may support the decision for surgery and may facilitate targeting epileptogenic tissue for re-resection by employing navigation and iopMR imaging.
Collapse
Affiliation(s)
- Julia Shawarba
- Neurosurgical Department, Erlangen University Clinic, Erlangen, Germany
| | - Burkhard Kaspar
- Neurological Department, Erlangen University Clinic, Erlangen, Germany
| | - Stefan Rampp
- Neurosurgical Department, Erlangen University Clinic, Erlangen, Germany
| | - Fabian Winter
- Neurosurgical Clinic, Vienna Medical University, Vienna, Austria
| | - Roland Coras
- Neuropathological Institute, Erlangen University Clinic, Erlangen, Germany
| | - Ingmar Blumcke
- Neuropathological Institute, Erlangen University Clinic, Erlangen, Germany
| | - Hajo Hamer
- Neurological Department, Erlangen University Clinic, Erlangen, Germany
| | | | - Karl Roessler
- Neurosurgical Department, Erlangen University Clinic, Erlangen, Germany.,Neurosurgical Clinic, Vienna Medical University, Vienna, Austria
| |
Collapse
|
9
|
Choi JY, Wang ZI. Merging Magnetoencephalography into Epilepsy Presurgical Work-up Under the Framework of Multimodal Integration. Neuroimaging Clin N Am 2020; 30:249-259. [PMID: 32336411 DOI: 10.1016/j.nic.2020.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Multimodal image integration is the procedure that puts together imaging data from multiple sources into the same space by a computerized registration process. This procedure is relevant to patients with difficult-to-localize epilepsy undergoing presurgical evaluation, who typically have many tests performed, including MR imaging, PET, ictal single-photon emission computed tomography, magnetoencephalography (MEG), and intracranial electroencephalogram (EEG). This article describes the methodology of such integration, focusing on integration of MEG. Also discussed is the clinical value of integration of MEG, in terms of planning of intracranial EEG implantation, interpretation of intracranial EEG data, planning of final resection, and addressing surgical failures.
Collapse
Affiliation(s)
- Joon Yul Choi
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Desk S51, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Zhong Irene Wang
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Desk S51, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| |
Collapse
|
10
|
Roessler K, Kasper BS, Heynold E, Coras R, Sommer B, Rampp S, Hamer HM, Blümcke I, Buchfelder M. Intraoperative Magnetic-Resonance Tomography and Neuronavigation During Resection of Focal Cortical Dysplasia Type II in Adult Epilepsy Surgery Offers Better Seizure Outcomes. World Neurosurg 2018; 109:e43-e49. [DOI: 10.1016/j.wneu.2017.09.100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 10/18/2022]
|